Contents

1 Introduction .. 1
 1.1 Reaction-Diffusion Systems 1
 1.2 The Gierer-Meinhardt System for Hydra 4
 1.3 Turing’s Diffusion-Driven Instability 5
 1.4 Amplitude Equations and Order Parameters 9
 1.5 Analytical Methods for Spiky Patterns 9

2 Existence of Spikes for the Gierer-Meinhardt System in One Dimension 13
 2.1 Symmetric Multi-spike Solutions: A Rigorous Proof of Existence 14
 2.2 Asymmetric Multi-spike Solutions: A Formal Derivation 15
 2.3 Existence of Symmetric and Asymmetric Multiple Spikes: 17
 A Unified Rigorous Approach 17
 2.3.1 Some Preliminaries 22
 2.3.2 Study of the Approximate Solutions 25
 2.3.3 The Liapunov-Schmidt Reduction Method 29
 2.3.4 The Reduced Problem 32
 2.4 Clustered Multiple Spikes 35
 2.5 Notes on the Literature 39

3 The Nonlocal Eigenvalue Problem (NLEP) 41
 3.1 A Basic Theorem for \(\tau = 0 \) 41
 3.2 The Method of Continuation 50
 3.3 Hopf Bifurcation ... 51
 3.4 The Method of Hypergeometric Functions 57
 3.5 Notes on the Literature 70

4 Stability of Spikes for the Gierer-Meinhardt System in One Dimension 71
 4.1 Symmetric Multiple Spikes: Stability 71
 4.1.1 Large Eigenvalues 73
 4.1.2 Small Eigenvalues 76
4.1.3 The Spectrum of the Matrices \mathcal{B} and \mathcal{M} 85
4.2 Notes on the Literature .. 88

5 Existence of Spikes for the Shadow Gierer-Meinhardt System 91
5.1 The Shadow Gierer-Meinhardt System 91
5.2 The Existence Proof .. 93
 5.2.1 Technical Analysis .. 93
 5.2.2 The Liapunov-Schmidt Reduction Method 100
 5.2.3 The Reduced Problem: A Finite-Dimensional Maximisation Problem 103
 5.2.4 The Completion of the Existence Proof 104
5.3 Notes on the Literature ... 105

6 Existence and Stability of Spikes for the Gierer-Meinhardt System in Two Dimensions ... 107
 6.1 Symmetric Multiple Spikes: Existence 107
 6.1.1 The Amplitudes of the Peaks 109
 6.1.2 Reduction to Finite Dimensions 113
 6.1.3 The Reduced Problem ... 121
 6.2 Symmetric Multiple Spikes: Stability 124
 6.2.1 Large Eigenvalues ... 126
 6.2.2 Small Eigenvalues ... 131
 6.3 Asymmetric Multiple Spikes: Existence 136
 6.3.1 Analysing the Algebraic System for the Amplitudes 139
 6.3.2 The Reduced Problem ... 140
 6.4 Asymmetric Multiple Spikes: Stability 141
 6.4.1 Large Eigenvalues ... 142
 6.4.2 Small Eigenvalues ... 146
 6.5 Notes on the Literature ... 147

7 The Gierer-Meinhardt System with Inhomogeneous Coefficients 149
 7.1 Precursors ... 149
 7.1.1 Results on Existence and Stability 150
 7.1.2 Numerical Computations ... 156
 7.2 Discontinuous Diffusivities .. 157
 7.2.1 Existence and Stability of Interior Spike 158
 7.2.2 A Spike near the Jump Discontinuity of the Inhibitor Diffusivity 163
 7.2.3 Numerical Simulations ... 169
 7.3 Notes on the Literature ... 172

8 Other Aspects of the Gierer-Meinhardt System 175
 8.1 The Gierer-Meinhardt System with Finite Diffusivity 175
 8.1.1 Some Properties of the Function w_L 178
 8.1.2 Nonlocal Eigenvalue Problems 185
 8.1.3 Extensions to Higher Dimensions 191
8.2 The Gierer-Meinhardt System with Large Reaction Rates 193
 8.2.1 Construction of the Steady State 196
 8.2.2 Stability 199
 8.2.3 Large Eigenvalues 200
 8.2.4 Small Eigenvalues 209
8.3 The Gierer-Meinhardt System with Robin Boundary Conditions 214
 8.3.1 Study of the NLEP 219
 8.3.2 Eigenvalue Estimates 232
 8.3.3 Numerical Simulations 239
8.4 The Gierer-Meinhardt System on Manifolds 241
 8.4.1 Introduction 241
 8.4.2 The Geometric Setting 242
 8.4.3 The Main Results 244
8.5 Notes on the Literature 246
9 The Gierer-Meinhardt System with Saturation 249
 9.1 The Parametrised Ground State 251
 9.2 Stability of Spikes 255
 9.3 Notes on the Literature 261
10 Spikes for Other Two-Component Reaction-Diffusion Systems 263
 10.1 The Schnakenberg Model 263
 10.2 The Gray-Scott Model 265
 10.3 Flow-Distributed Spikes 267
 10.4 Notes on the Literature 269
11 Reaction-Diffusion Systems with Many Components 271
 11.1 The Hypercycle of Eigen and Schuster 271
 11.2 Mutual Exclusion of Spikes 275
 11.3 Multiple Activators and Substrates 279
 11.4 Exotic Spikey Patterns for a Consumer Chain Model 282
 11.5 Notes on the Literature 286
12 Biological Applications 287
 12.1 Biological, Chemical and Ecological Applications of Reaction-Diffusion Systems 287
 12.2 Hydra: Transplantation of Head 288
 12.4 Pigmentation Patterns on Sea Shells, Fish and Mammals 293
 12.5 Patterns on Growing Domains: Stripes on Angelfish and Tooth Formation in Alligators 294
13 Appendix 297
 13.1 Sobolev Spaces and Linear Operators 297
 13.2 Uniqueness, Nondegeneracy and Spectrum of the Ground State 299
References ... 305
Index ... 317
Mathematical Aspects of Pattern Formation in Biological Systems
Wei, J.; Winter, M.
2014, XII, 319 p. 20 illus., Hardcover
ISBN: 978-1-4471-5525-6