Contents

1 Introduction .. 1
 1.1 The Concept of Fractional Signals and Systems in Biomedical Engineering 1
 1.2 Short History of Fractional Calculus and Its Application to the Respiratory System 2
 1.3 Emerging Tools to Analyze and Characterize the Respiratory System .. 6
 1.3.1 Basic Concepts of Fractional Calculus 6
 1.3.2 Fractional-Order Dynamical Systems 8
 1.3.3 Relation Between Fractal Structure and Fractal Dimension .. 9
 1.4 Summary ... 11

2 The Human Respiratory System 13
 2.1 Anatomy and Structure 13
 2.2 Morphology 14
 2.3 Specific Pulmonary Abnormalities 14
 2.4 Structural Changes in the Lungs with Disease 19
 2.5 Non-invasive Lung Function Tests 21
 2.6 Summary ... 22

3 The Respiratory Impedance 23
 3.1 Forced Oscillation Technique Lung Function Test 23
 3.2 Frequency Response of the Respiratory Tissue and Airways .. 25
 3.3 Lumped Models of the Respiratory Impedance 27
 3.3.1 Selected Parametric Models from Literature 27
 3.3.2 The Volunteers 31
 3.3.3 Identification Algorithm 32
 3.3.4 Results and Discussion 32
 3.4 Summary ... 37

4 Modeling the Respiratory Tract by Means of Electrical Analogy 39
 4.1 Modeling Based on a Simplified Morphology and Structure .. 39
Contents

4.2 Electrical Analogy ... 46
4.2.1 Elastic Tube Walls ... 49
4.2.2 Viscoelastic Tube Walls 50
4.2.3 Generic Recurrence in the Airways 51
4.3 Some Further Thoughts .. 52
4.4 Summary ... 53

5 Ladder Network Models as Origin of Fractional-Order Models ... 55
5.1 Fractal Structure and Ladder Network Models 55
5.1.1 An Elastic Airway Wall 55
5.1.2 A Viscoelastic Airway Wall 61
5.2 Effects of Structural Asymmetry 64
5.3 Relation Between Model Parameters and Physiology 66
5.3.1 A Simulation Study ... 66
5.3.2 A Study on Measured Respiratory Impedance 70
5.4 Summarizing Thoughts .. 72

6 Modeling the Respiratory Tree by Means of Mechanical Analogy . 77
6.1 Basic Elements .. 77
6.2 Mechanical Analogue and Ladder Network Models 79
6.3 Stress–Strain Curves .. 84
6.3.1 Stepwise Variations of Strain 84
6.3.2 Sinusoidal Variations of Strain 86
6.4 Relation Between Lumped FO Model Parameters and Viscoelasticity 89
6.5 Implications in Pathology .. 96
6.6 Summary .. 97

7 Frequency Domain: Parametric Model Selection and Evaluation . 99
7.1 Overview of Available Models for Evaluating the Respiratory Impedance .. 99
7.2 FO Model Selection in Relation to Various Frequency Intervals 100
7.2.1 Relation Between Model Parameters and Physiology 101
7.2.2 Subjects ... 102
7.2.3 Results ... 103
7.3 Implications in Pathology .. 108
7.3.1 FOT Measurements on Adults 108
7.3.2 Healthy vs. COPD ... 110
7.3.3 Healthy vs. Kyphoscoliosis 114
7.3.4 FOT Measurements on Children 117
7.3.5 Healthy vs. Asthma in Children 119
7.3.6 Healthy vs. Cystic Fibrosis in Children 124
7.4 Parametric Models for Multiple Resonant Frequencies 127
7.4.1 High Frequency Range of Respiratory Impedance 127
7.4.2 Evaluation on Healthy Adults 129
7.4.3 Relation to Physiology and Pathology 135
7.5 Summarizing Thoughts ... 137
The Human Respiratory System
An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics
Ionescu, C.M.
2013, XXV, 217 p. 148 illus., 129 illus. in color., Hardcover
ISBN: 978-1-4471-5387-0