The objective of the book is to put forward emerging ideas from biology and mathematics into biomedical engineering applications in general with special attention to the analysis of the human respiratory system. The field of fractional calculus is mature in mathematics and chemistry, but still in infancy in engineering applications. However, the last two decades have been very fruitful in producing new ideas and concepts with applications in biomedical engineering. The reader should find the book a revelation of the latest trends in modeling and identification of the human respiratory parameters for the purpose of diagnostic and monitoring. Of special interest here is the notion of fractal structure, which tells us something about the biological efficiency of the human respiratory system. Related to this notion is the fractal dimension, relating the adaptation of the fractal structure to environmental changes (i.e. disease). Finally, we have the dynamical pattern of breathing, which is then the result of both the structure and the adaptability of the respiratory system.

The distinctive feature of the book is that it offers a bottom-up approach, starting from the basic anatomical structure of the respiratory system and continuing with the dynamic pattern of the breathing. The relations between structure (or the specific changes within it) and fundamental working of the system as a whole are pinned such that the reader can understand their interplay. Moreover, this interplay becomes crucial when alterations at the structural level in the airway caused by disease may require adaptation of the body to the functional requirements of breathing (i.e. to ensure the necessary amount of oxygen to the organs). Adaptation of the human body, and specially of the respiratory system, to various conditions can be thus explained and justified in terms of breathing efficiency.

The motivation for putting together this book is to give by means of the example chosen (i.e. the respiratory system) an impulse to the engineering and medical community in embracing these new ideas and becoming aware of the interaction between these disciplines. The net benefit of reading this book is the advantage of any researcher who wants to stay up to date with the new emerging research trends in biomedical applications. The book offers the reader an opportunity to become aware of a novel, unexplored, and yet challenging research direction.
My intention was to build a bridge between the medical and engineering worlds, to facilitate cross-fertilization. In order to achieve this, I tried to organize the book in the traditional structure of a textbook.

A brief introduction will present the concept of fractional signals and systems to the reader, including a short history of the fractional calculus and its applications in biology and medicine. In this introductory chapter, the notions of fractal structure and fractal dimension will be defined as well.

The second chapter describes the anatomy of the respiratory system with morphological and structural details, as well as lung function tests for evaluating the respiratory parameters with the aim of diagnosis and monitoring. The third chapter will present the notion of respiratory impedance, how it is measured, why it is useful and how we are going to use it in the remainder of the book.

A mathematical basis for modeling air-pressure and air-flow oscillations in the airways is given in the fourth chapter. This model will then be used as a basis for further developments of ladder network models in Chap. 5, thus preserving anatomy and structure of the respiratory system. Simulations of the effects of fractal symmetry and asymmetry on the respiratory properties and the evaluation of respiratory impedance in the frequency domain are also shown.

Chapter 6 will introduce the equivalent mechanical model of the respiratory tree and its implications for evaluating viscoelasticity. Of special importance is the fact that changes in the viscoelastic effects are clearly seen in patients with respiratory insufficiency, hence markers are developed to evaluate these effects and provide insight into the monitoring of the disease evolution. Measurements on real data sets are presented and discussed.

Chapter 7 discusses models which can be used to model the respiratory impedance over a broad range of frequencies, namely ladder network model and a model existing in the literature, for comparison purposes. The upper airway shunt (not part of the actual respiratory system with airways and parenchyma) and its bias effect in the estimated values for the respiratory impedance is presented, along with a characterization on healthy persons and prediction values. Measurements on real data sets are presented and discussed.

Chapter 8 presents the analysis of the breathing pattern and relation to the fractal dimension. Additionally, a link between the fractal structure and the convergence to fractional order models is shown, allowing also a link between the value of the fractional order model and the values of the fractal dimension. In this way, the interplay between structure and breathing patterns is shown. A discussion of this interplay points to the fact that with disease, changes in structure occur, these structural changes implying changes in the work necessary to breath at functional levels. Measurements on real data sets are again presented and discussed.

Chapter 9 introduces methods and protocols to investigate whether moving from the theory of linear system to nonlinear contributions can bring useful insight as regards diagnosis. In this context, measuring frequencies close to the breathing of the patient is more useful than measuring frequencies outside the range of tidal breathing. This also implies that viscoelasticity will be measured in terms of nonlinear effects. The nonlinear artifacts measured in the respiratory impedance, are then...
linked to the viscous and elastic properties in the lung parenchyma. Measurements on real data sets are presented and discussed. Chapter 10 summarizes the contributions of the book and point to future perspectives in terms of research and diagnosis methods. In the Appendix, some useful information is given to further support the reader in his/her quest for knowledge.

Finally, I would like to end this preface section with some words of acknowledgment.

I would like to thank Oliver Jackson for the invitation to start this book project, and Ms. Charlotte Cross of Springer London for her professional support with the review, editing, and production steps.

Part of the ideas from this book are due to the following men(tors): Prof. Robin De Keyser (Ghent University, Belgium), Prof. Jose-Antonio Tenreiro Machado (Institute of Engineering, Porto, Portugal), Prof. Alain Oustaloup (University of Bordeaux I, France) and Prof. Viorel Dugan (University of Lower Danube, Galati, Romania). Clinical insight has been generously provided to me by Prof. Dr. MD Eric Derom (Ghent University Hospital, Belgium) and Prof. Dr. MD Kristine Desager (Antwerp University Hospital, Belgium). I thank them cordially for their continuous support and encouragement.

Further technical support is acknowledged from the following Master and Ph.D. students throughout the last decade: Alexander Caicedo, Ionut Muntean, Niels Van Nuffel, Nele De Geeter, Mattias Deneut, Michael Muehlebach, Hannes Maes, and Dana Copot.

Next, I would like to acknowledge the persons who supported my work administratively and technically during the clinical trials.

- For the measurements on healthy adult subjects, I would like to thank Mr. Sven Verschraegen for the technical assistance for pulmonary function testing at the Department of Respiratory Medicine of Ghent University Hospital, Belgium.
- For the measurements on healthy children, I would like to thank Mr. Raf Missorten from St. Vincentius school in Zwijnaarde, Principal, for allowing us to perform tests and to Mr. Dirk Audenaert for providing the healthy volunteers. I would also like to thank Nele De Geeter and Niels Van Nuffel for further assistance during the FOT (Forced Oscillations Technique) measurements.
- For the measurements on COPD patients: many thanks to Prof. Dr. Dorin Isoc from Technical University of Cluj-Napoca and to Dr. Monica Pop for the assistance in the University of Pharmacy and Medicine “Iuliu Hatieganu” in Cluj-Napoca, Romania.
- For the measurements on asthmatic children, I would like to thank Rita Claes, Hilde Vaerenberg, Kevin De Sooner, Lutje Claus, Hilde Cuypers, Ria Heyndrickx and Pieter De Herdt from the pulmonary function laboratory in UZ Antwerp, for the professional discussions, technical and amicable support during my stay in their laboratory.
- For the measurements on kyphoscoliosis adults, I would like to thank Mrs. Hermine Middendorp for the assistance with the Ethical Committee request; to Philippe De Gryze, Frank De Vriendt, Lucienne Daman, and Evelien De Burck
for performing the spirometry tests and to Dr. Robert Gosselin for calculating the Cobb angles on the RX photos.

- For the measurements on healthy children during the Science Week event, I would like to thank Stig Dooms, Hannes Maes, Gerd Vandersteen, and Dana Copot for their technical support with the device and for performing measurements.

Last but not least, I would like to acknowledge the moral support and care received from my grandma, Buna, my aunt, Victoria, and my two cousins, Florina and Petrica. I would also like to thank Nathalie for her friendship during the strenuous times of writing this book, and to thank Robin, Amelie, Cosmin, and Dana for their critical comments to improve the content of the book.

Gent, Belgium

June 2013

Clara M. Ionescu
The Human Respiratory System
An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics
Ionescu, C.M.
2013, XXV, 217 p. 148 illus., 129 illus. in color., Hardcover
ISBN: 978-1-4471-5387-0