Preface

Offshore engineering is concerned with the design and operation of systems in harsh marine environmental conditions. It encompasses a whole spectrum of diverse multidisciplinary and complex systems and operations such as offshore installations, structures, foundations, cables and pipelines, moorings, risers, drilling, mining, disposal and salvage operations, etc. The design of mechanical systems to operate in the harsh marine environmental conditions is one of the most challenging tasks in offshore engineering. One part of the challenges is in the modeling and control of such systems. This subject has received increasing attention in recent years with growing energy demands extending oil and gas explorations to deeper and even harsher environments.

The main purpose of the book is to investigate the fundamental issues including dynamical modeling and control design for different mechanical systems in offshore engineering. The book presents theoretical explorations on several fundamental problems for dynamics and control of marine mechanical systems. Motivated by the need to develop a general dynamic modeling and control framework to achieve system performance, concepts from control, mechanical structures, and offshore fields are synthesized via a systematic approach and presented. The basic theoretical framework is formed toward mechanical systems in offshore engineering, which not only extends the theory of mechanical structures, but also applies to realistic problems faced by the industry. A comprehensive study is provided for developing advance strategies for the modeling and control design of the systems with guaranteed stability. By investigating the characteristics of mechanical models, advanced control approaches are presented for marine mechanical systems with specific applications, i.e., installation systems, mooring systems, and riser systems. The control designs are coupled with numerical simulations to illustrate the effectiveness.

Offshore applications are characterized by the time-varying environmental disturbances and the sea conditions. For riser systems, vibration and deformation of the flexible structures due to the ocean current disturbances and the tension exerted at the top can produce premature fatigue problems and failures that require costly repairs. Proper control techniques are desirable for preventing damage and improving
the lifespan of these structures. The chapter on structural analysis and riser operations (contributed by Geoff Lyons and Minoo Patel) describing an on-board riser operation management system that provides a real-time guidance for carrying out connected and disconnected mode drilling riser operations on board a vessel as an industrial case study.

The book contains ten chapters, which exploit several independent yet related topics in detail.

Chapter 1 introduces the system description, background, and motivation of the study and presents several general concepts and fundamental observations.

Chapter 2 presents several lemmas and properties used in the subsequent development and derivations of the dynamical models, and further stability analysis for the marine mechanical structures.

In Chap. 3, positioning control in the horizontal plane is investigated for the installation of subsea systems, with thrusters attached, under time-varying irrotational ocean current, when the payload is near to the seabed. Backstepping in combination with adaptive feedback approximation techniques is employed in the design of the control, with the option of high-gain observer for output feedback control. The stability of the design is demonstrated through Lyapunov analysis where semiglobal uniform boundedness of the closed-loop signals are guaranteed. The proposed adaptive neural control is able to capture the dominant dynamic behaviors without exact information on the hydrodynamic coefficients of the structure and current measurements.

In Chap. 4, the model of the coupled crane-cable-payload with nonuniform parameters is presented. Positioning control is derived for the coupled system with uniform parameters using barrier Lyapunov functions. Through Lyapunov analysis, it is shown that the coupled crane, payload flexible system is stable under the control action, the physical limits from operations planning and safety specifications are not transgressed, and positioning of crane and payload is achieved. A stabilizing boundary control is proposed for the coupled system with nonuniform parameters. Rigorous Lyapunov stability analysis is carried out, and uniform boundedness of the system is shown under the proposed control. Finally, the performance of the proposed control is given through numerical simulations.

In Chap. 5, a robust adaptive boundary control of a marine installation system is developed to position the subsea payload to the desired set-point and suppress the cable’s vibration. The flexible cable coupled with vessel and payload dynamics is described by a distributed parameter system with one partial differential equation (PDE) and two ordinary differential equations (ODEs). Boundary control is proposed at the top and bottom boundary of the cable based on the Lyapunov direct method. Considering the system parametric uncertainties and the unknown ocean disturbances, the developed adaptive boundary control schemes achieve the uniform boundedness of the steady-state error between the boundary payload and the desired position. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.

Chapter 6 is dedicated on the control problem of a thruster-assisted single-point mooring system, in the presence of uncertainties and unknown backlash-like hysteresis nonlinearity. Using backstepping technique and Lyapunov synthesis, and
employing neural networks (NNs) to approximate the unknown nonlinear functions, robust adaptive backstepping control is developed for the full-state feedback case. Subsequently, in order to overcome the measure difficulty in the vessel velocity vector, a high-order NN-based observer is constructed to estimate the unmeasurable state vector. It is shown that the proposed observer has an excellent estimation performance in spite of the existence of uncertainties and unknown backlash-like hysteresis nonlinearities. Based on this observer, robust adaptive output feedback control is developed via backstepping design. Under the proposed control, the semiglobal uniform boundedness of all the signals in the closed-loop systems is guaranteed for both full-state and output feedback cases.

In Chap. 7, boundary control for a coupled nonlinear flexible marine riser with two actuators in transverse and longitudinal directions is developed to reduce the riser’s vibrations. The dynamic behavior of the flexible riser is represented by a distributed parameter system (DPS) model with partial differential equations (PDEs) and the control is applied at the top boundary of the riser based on Lyapunov direct method to suppress the riser’s vibrations. With the proposed boundary control, the uniform boundedness under ocean current disturbances and exponential stability under the free vibration condition is achieved. The proposed control is independent of system parameters, which ensures the robustness of the system to variations in parameters.

Chapter 8 studies the modeling and control of a flexible marine riser with the vessel dynamics. Both the dynamics of the vessel and the vibration of the riser are considered in the dynamic analysis, which make the system more difficult to control. Boundary control is proposed at the top boundary of the riser to suppress the riser’s vibration. Adaptive control is designed when the system parametric uncertainties exist. Employing the Lyapunov direct method, the states of the system are proven to be uniformly ultimately bounded. The state of the system will converge to a small neighborhood of zero by appropriately choosing the design parameters. The design is based on the PDEs of the system, thus avoiding some drawbacks associated with the traditional truncated-model-based design approaches.

Chapter 9 serves as an industrial case study in this book. This chapter investigates the structural analysis and the riser operations of fixed and floating offshore structures using pipe connections between surface facilities and seabed as well as pipes laying on or below the seabed for transportation of oil and gas. The analysis of vertical marine risers under the influences of both internal and external forces is described. Four configurations of the marine risers are introduced including free handing mode, connected mode, operational mode, and nonoperational but connected mode. A marine riser can be maintained in an operable condition by ensuring that the lower ball joint angle remains below about 4 degrees. Three operating procedures are given to bring the angle down. The marine riser monitoring system provides information on the behaviors of the platform and the marine riser, and comparisons can be made with previous results for evaluating the projected fatigue life of the riser. BPP-RMS, an example of the comprehensive Riser Management System (RMS) for riser maintenance and inspection, is presented. BPP-RMS is an on-board riser operation management system that provides a real-time guidance for carrying out connected and disconnected mode drilling riser operations on board a vessel.
Chapter 10, the last chapter, makes conclusions on this book.

In summary, this book covers the dynamical analysis and control design for marine mechanical systems. The book is primarily intended for researchers and engineers in the control system and offshore engineering community. It can also serve as a complementary reading on modeling and control of marine mechanical systems at the post-graduate level.

Acknowledgements

For this book, we have had the great fortune of working with brilliant people who are generous with their time and friendship, through many discussions filled with creativity and inspiration. First of all, we would like to express our gratitude to our co-workers who have contributed to the collaborative studies of this book.

We would also like to express our sincere appreciation to our colleagues who have contributed to the collaborative research. In particular, we would like to thank Keum-Shik Hong, from the Pusan National University, Korea, Frank Lewis, from the University of Texas at Arlington, US, Franz S. Hover, from the Massachusetts Institute of Technology, US, Miroslav Krstic, from the University of California, San Diego, US, Tong Heng Lee and Chang Chieh Hang, from the National University of Singapore, Singapore and their research groups for their excellent research works, and helpful advice on our research. Special thanks go to Oliver Jackson for his assistance and efforts on the process of publishing this book.

Appreciations must be made to Geoff Lyons, Minoo Patel, Keng Peng Tee, Lianfei Zhai, Mou Chen, Beibei Ren, Rongxin Cui, Zhen Wang, Ker Wei Yeoh, Yi Feng Wah, Kim Thow Yap, Hai Lin, and Abdullah Al Mamun for the constructive discussions and sharing of ideas. We would also like to thank Yanan Li, Hoang Minh Vu, Xinixin Yang and Qian Zhao for proofreading and providing numerous useful comments to improve the quality of the book.

Last but not the least, we are deeply gratitude to our families for their invaluable loves, supports and sacrifices over the years.

This work is supported by (i) “Intelligent Deepwater Mooring System”, funded by Agency for Science Technology and Research (A*STAR), Singapore; (ii) “Modelling and Control of Subsea Installation”, funded by The Lloyd’s Register Educational Trust (The LRET), United Kingdom; and (iii) “Design and Research on Boundary Control of a Flexible Marine Riser”, funded by the National Natural Science Foundation of China (NSFC) under the Grant 61203057, China.

Clear River, Chengdu
Kent Ridge Crescent, Singapore/Clear River, Chengdu
Kent Ridge Crescent, Singapore
Kent Ridge Crescent, Singapore
January 2013
Dynamics and Control of Mechanical Systems in Offshore Engineering
He, W.; Ge, S.S.; How, B.V.E.; Choo, Y.S.
2014, XV, 230 p. 91 illus., 68 illus. in color., Hardcover
ISBN: 978-1-4471-5336-8