Contents

1 Introduction ... 1
 1.1 Motivation ... 1
 1.2 Background ... 2
 1.3 Objectives and Organization of the Book 5

2 Background on Nonlinear Systems and Control 9
 2.1 Notation .. 9
 2.2 Nonlinear Systems .. 9
 2.3 Stability of Nonlinear Systems .. 10
 2.3.1 Stability Definitions .. 11
 2.3.2 Stability Characterizations Using Function Classes \(\mathcal{K}, \mathcal{K}_\infty, \) and \(\mathcal{KL} \) .. 12
 2.3.3 Lyapunov’s Direct (Second) Method 13
 2.3.4 LaSalle’s Invariance Principle 15
 2.3.5 Lyapunov’s Indirect (First) Method 16
 2.3.6 Input-to-State Stability ... 17
 2.4 Stabilization of Nonlinear Systems 18
 2.5 Feedback Linearization and Zero Dynamics 20
 2.6 Input Constraints .. 23
 2.7 Model Predictive Control .. 24
 2.8 Lyapunov-Based MPC .. 26
 2.9 Hybrid Systems .. 28
 2.10 Conclusions ... 28

3 Integrated Fault-Detection and Fault-Tolerant Control 29
 3.1 Introduction ... 29
 3.2 Process Description ... 29
 3.3 Motivating Example .. 30
 3.4 State Feedback Case ... 32
 3.4.1 Bounded Lyapunov-Based Control 32
 3.4.2 State Feedback Fault-Tolerant Control 33
 3.4.3 Simulation Results .. 38
3.5 Handling Availability of Limited Measurements: The Output Feedback Case ... 40
3.5.1 Output Feedback Control .. 42
3.5.2 Integrating Fault-Detection and Fault-Tolerant Output Feedback Control ... 44
3.5.3 Simulation Results .. 49
3.6 Conclusions .. 54

4.1 Introduction ... 55
4.2 Preliminaries ... 56
4.3 State-Feedback Fault-Tolerant Control 57
4.3.1 State-Feedback Fault Detection and Isolation Filter 57
4.3.2 State-Feedback Fault-Tolerant Controller 59
4.4 Output-Feedback Fault-Tolerant Control 61
4.4.1 Output Feedback Controller .. 61
4.4.2 Output-Feedback Fault Detection and Isolation Filter 63
4.4.3 Output-Feedback Fault Detection and Isolation and Fault Tolerant Control .. 64
4.5 Simulation Examples .. 66
4.6 Application to a Reverse Osmosis Desalination Process 76
4.6.1 Process Description and Modeling 77
4.6.2 Fault-Detection and Isolation and Fault-Tolerant Control 79
4.6.3 Simulation Results .. 82
4.7 Conclusions ... 84

5 Safe-Parking .. 85
5.1 Introduction ... 85
5.2 System Description .. 86
5.2.1 Process Description .. 86
5.2.2 Motivating Example ... 86
5.2.3 Lyapunov-Based Model Predictive Control 88
5.3 Safe-Parking of Nonlinear Process Systems 89
5.3.1 Problem Definition .. 90
5.3.2 Safe-Parking to Resume Nominal Operation 90
5.3.3 Incorporating Performance Considerations in Safe-Parking 94
5.3.4 Illustrative Simulation Example 97
5.4 Application to the Styrene Polymerization Process 100
5.5 Conclusions ... 103

6 Fault Diagnosis and Robust Safe-Parking 105
6.1 Introduction ... 105
6.2 Preliminaries ... 106
6.2.1 System Description .. 106
6.2.2 Lyapunov-Based Predictive Control 107
6.3 Fault Detection and Diagnosis Structure 109
Fault-Tolerant Process Control
Methods and Applications
Mhaskar, P.; Liu, J.; Christofides, P.D.
2013, XXIV, 264 p., Hardcover
ISBN: 978-1-4471-4807-4