Contents

Part I Introduction, Basic Concepts and Preliminaries

1 Introduction ... 3
 1.1 Basic Concepts of Fault Diagnosis Technique 4
 1.2 Historical Development and Some Relevant Issues 8
 1.3 Notes and References 10

2 Basic Ideas, Major Issues and Tools in the Observer-Based FDI Framework ... 13
 2.1 On the Observer-Based Residual Generator Framework 13
 2.2 Unknown Input Decoupling and Fault Isolation Issues ... 14
 2.3 Robustness Issues in the Observer-Based FDI Framework ... 15
 2.4 On the Parity Space FDI Framework 16
 2.5 Residual Evaluation and Threshold Computation 17
 2.6 FDI System Synthesis and Design 18
 2.7 Notes and References 18

3 Modelling of Technical Systems 21
 3.1 Description of Nominal System Behavior 22
 3.2 Coprime Factorization Technique 23
 3.3 Representations of Systems with Disturbances 25
 3.4 Representations of System Models with Model Uncertainties ... 25
 3.5 Modelling of Faults 27
 3.6 Modelling of Faults in Closed-Loop Feedback Control Systems ... 29
 3.7 Case Study and Application Examples 31
 3.7.1 Speed Control of a DC Motor 31
 3.7.2 Inverted Pendulum Control System 34
 3.7.3 Three-Tank System 38
 3.7.4 Vehicle Lateral Dynamic System 41
 3.7.5 Continuous Stirred Tank Heater 46
 3.8 Notes and References 49
Contents

4 Fault Detectability, Isolability and Identifiability 51
 4.1 Fault Detectability ... 51
 4.2 Excitations and Detection of Multiplicative Faults 56
 4.3 Fault Isolability ... 57
 4.3.1 Concept of System Fault Isolability 57
 4.3.2 Fault Isolability Conditions 58
 4.4 Fault Identifiability .. 65
 4.5 Notes and References .. 67

Part II Residual Generation

5 Basic Residual Generation Methods ... 71
 5.1 Analytical Redundancy .. 72
 5.2 Residuals and Parameterization of Residual Generators 75
 5.3 Issues Related to Residual Generator Design and Implementation 78
 5.4 Fault Detection Filter ... 79
 5.5 Diagnostic Observer Scheme 81
 5.5.1 Construction of Diagnostic Observer-Based Residual Generators 81
 5.5.2 Characterization of Solutions 82
 5.5.3 A Numerical Approach 91
 5.5.4 An Algebraic Approach 96
 5.6 Parity Space Approach ... 98
 5.6.1 Construction of Parity Relation Based Residual Generators 98
 5.6.2 Characterization of Parity Space 101
 5.6.3 Examples .. 102
 5.7 Interconnections, Comparison and Some Remarks 103
 5.7.1 Parity Space Approach and Diagnostic Observer 104
 5.7.2 Diagnostic Observer and Residual Generator of General Form ... 108
 5.7.3 Applications of the Interconnections and Some Remarks 111
 5.7.4 Examples .. 113
 5.8 Notes and References .. 115

6 Perfect Unknown Input Decoupling ... 117
 6.1 Problem Formulation ... 117
 6.2 Existence Conditions of PUIDP 119
 6.2.1 A General Existence Condition 119
 6.2.2 A Check Condition via Rosenbrock System Matrix 120
 6.2.3 An Algebraic Check Condition 122
 6.3 A Frequency Domain Approach 126
 6.4 UIFDF Design ... 128
 6.4.1 The Eigenstructure Assignment Approach 129
 6.4.2 Geometric Approach ... 133
 6.5 UIDO Design .. 141
 6.5.1 An Algebraic Approach 141
 6.5.2 Unknown Input Observer Approach 142
6.5.3 A Matrix Pencil Approach to the UIDO Design 146
6.5.4 A Numerical Approach to the UIDO Design 150
6.6 Unknown Input Parity Space Approach 152
6.7 An Alternative Scheme—Null Matrix Approach 153
6.8 Discussion .. 154
6.9 Minimum Order Residual Generator 154
6.9.1 Minimum Order Residual Generator Design by Geometric
Approach .. 155
6.9.2 An Alternative Solution .. 157
6.10 Notes and References .. 160

7 Residual Generation with Enhanced Robustness Against Unknown
Inputs ... 163
7.1 Mathematical and Control Theoretical Preliminaries 164
7.1.1 Signal Norms .. 165
7.1.2 System Norms ... 167
7.1.3 Computation of H_2 and H_∞ Norms 169
7.1.4 Singular Value Decomposition (SVD) 171
7.1.5 Co-Inner–Outer Factorization 171
7.1.6 Model Matching Problem .. 174
7.1.7 Essentials of the LMI Technique 175
7.2 Kalman Filter Based Residual Generation 177
7.3 Robustness, Fault Sensitivity and Performance Indices 180
7.3.1 Robustness and Sensitivity 181
7.3.2 Performance Indices: Robustness vs. Sensitivity 182
7.3.3 Relations Between the Performance Indices 182
7.4 Optimal Selection of Parity Matrices and Vectors 184
7.4.1 $S_{f,+}/R_d$ as Performance Index 184
7.4.2 $S_{f,-}/R_d$ as Performance Index 188
7.4.3 $J_{S_{-R}}$ as Performance Index 190
7.4.4 Optimization Performance and System Order 192
7.4.5 Summary and Some Remarks 193
7.5 H_∞ Optimal Fault Identification Scheme 196
7.6 H_2/H_2 Design of Residual Generators 198
7.7 Relationship Between H_2/H_2 Design and Optimal Selection
of Parity Vectors ... 201
7.8 LMI Aided Design of FDF .. 208
7.8.1 H_2 to H_2 Trade-off Design of FDF 208
7.8.2 On the H_- Index .. 213
7.8.3 H_2 to H_- Trade-off Design of FDF 221
7.8.4 H_∞ to H_- Trade-off Design of FDF 223
7.8.5 H_∞ to H_- Trade-off Design of FDF in a Finite Frequency
Range ... 225
7.8.6 An Alternative H_∞ to H_- Trade-off Design of FDF 226
7.8.7 A Brief Summary and Discussion 229
7.9 The Unified Solution .. 230
 7.9.1 $\mathcal{H}_i/\mathcal{H}_\infty$ Index and Problem Formulation 230
 7.9.2 $\mathcal{H}_i/\mathcal{H}_\infty$ Optimal Design of FDF: The Standard Form . . . 231
 7.9.3 Discrete-Time Version of the Unified Solution 234
 7.9.4 A Generalized Interpretation 235
7.10 The General Form of the Unified Solution 238
 7.10.1 Extended CIOF ... 239
 7.10.2 Generalization of the Unified Solution 241
7.11 Notes and References ... 244

8 Residual Generation with Enhanced Robustness Against Model Uncertainties .. 249
 8.1 Preliminaries .. 250
 8.1.1 LMI Aided Computation for System Bounds 250
 8.1.2 Stability of Stochastically Uncertain Systems 251
 8.2 Transforming Model Uncertainties into Unknown Inputs 252
 8.3 Reference Model Based Strategies 254
 8.3.1 The Basic Idea ... 254
 8.3.2 A Reference Model Based Solution for Systems with Norm-Bounded Uncertainties 254
 8.4 Residual Generation for Systems with Polytopic Uncertainties 261
 8.4.1 The Reference Model Scheme Based Scheme 262
 8.4.2 \mathcal{H}_∞ to \mathcal{H}_∞ Design Formulation 266
 8.5 Residual Generation for Stochastically Uncertain Systems . . . 267
 8.5.1 System Dynamics and Statistical Properties 268
 8.5.2 Basic Idea and Problem Formulation 269
 8.5.3 An LMI Solution ... 270
 8.5.4 An Alternative Approach 277
 8.6 Notes and References ... 280

Part III Residual Evaluation and Threshold Computation

9 Norm-Based Residual Evaluation and Threshold Computation ... 285
 9.1 Preliminaries .. 286
 9.2 Basic Concepts .. 288
 9.3 Some Standard Evaluation Functions 289
 9.4 Basic Ideas of Threshold Setting and Problem Formulation 291
 9.4.1 Dynamics of the Residual Generator 292
 9.4.2 Definitions of Thresholds and Problem Formulation 293
 9.5 Computation of $J_{th,RMS,2}$ 296
 9.5.1 Computation of $J_{th,RMS,2}$ for the Systems with the Norm-Bounded Uncertainty 296
 9.5.2 Computation of $J_{th,RMS,2}$ for the Systems with the Polytopic Uncertainty 300
 9.6 Computation of $J_{th,peak,peak}$ 302
 9.6.1 Computation of $J_{th,peak,peak}$ for the Systems with the Norm-Bounded Uncertainty 302
9.6.2 Computation of $J_{th, \text{peak, peak}}$ for the Systems with the Polytopic Uncertainty .. 305
9.7 Computation of $J_{th, \text{peak, 2}}$ 306
 9.7.1 Computation of $J_{th, \text{peak, 2}}$ for the Systems with the Norm-Bounded Uncertainty 306
 9.7.2 Computation of $J_{th, \text{peak, 2}}$ for the Systems with the Polytopic Uncertainty 309
9.8 Threshold Generator .. 310
9.9 Notes and References .. 312

10 Statistical Methods Based Residual Evaluation and Threshold Setting .. 315
 10.1 Introduction .. 315
 10.2 Elementary Statistical Methods 315
 10.2.1 Basic Hypothesis Test 315
 10.2.2 Likelihood Ratio and Generalized Likelihood Ratio 318
 10.2.3 Vector-Valued GLR .. 320
 10.2.4 Detection of Change in Variance 322
 10.2.5 Aspects of On-Line Realization 323
 10.3 Criteria for Threshold Computation 325
 10.3.1 The Neyman–Pearson Criterion 325
 10.3.2 Maximum a Posteriori Probability (MAP) Criterion 326
 10.3.3 Bayes’ Criterion .. 327
 10.3.4 Some Remarks ... 328
 10.4 Application of GLR Testing Methods 328
 10.4.1 Kalman Filter Based Fault Detection 329
 10.4.2 Parity Space Based Fault Detection 335
 10.5 Notes and References .. 337

11 Integration of Norm-Based and Statistical Methods .. 339
 11.1 Residual Evaluation in Stochastic Systems with Deterministic Disturbances 339
 11.1.1 Residual Generation .. 340
 11.1.2 Problem Formulation 341
 11.1.3 GLR Solutions .. 342
 11.1.4 An Example ... 345
 11.2 Residual Evaluation Scheme for Stochastically Uncertain Systems .. 346
 11.2.1 Problem Formulation 347
 11.2.2 Solution and Design Algorithms 348
 11.3 Probabilistic Robustness Technique Aided Threshold Computation .. 357
 11.3.1 Problem Formulation 357
 11.3.2 Outline of the Basic Idea 359
 11.3.3 LMIs Used for the Solutions 360
 11.3.4 Problem Solutions in the Probabilistic Framework 361
 11.3.5 An Application Example 363
 11.3.6 Concluding Remarks 365
 11.4 Notes and References .. 366
Part IV Fault Detection, Isolation and Identification Schemes

12 Integrated Design of Fault Detection Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 FAR and FDR</td>
<td>370</td>
</tr>
<tr>
<td>12.2 Maximization of Fault Detectability by a Given FAR</td>
<td>373</td>
</tr>
<tr>
<td>12.2.1 Problem Formulation</td>
<td>373</td>
</tr>
<tr>
<td>12.2.2 Essential Form of the Solution</td>
<td>374</td>
</tr>
<tr>
<td>12.2.3 A General Solution</td>
<td>376</td>
</tr>
<tr>
<td>12.2.4 Interconnections and Comparison</td>
<td>379</td>
</tr>
<tr>
<td>12.2.5 Examples</td>
<td>383</td>
</tr>
<tr>
<td>12.3 Minimizing False Alarm Number by a Given FDR</td>
<td>386</td>
</tr>
<tr>
<td>12.3.1 Problem Formulation</td>
<td>387</td>
</tr>
<tr>
<td>12.3.2 Essential Form of the Solution</td>
<td>388</td>
</tr>
<tr>
<td>12.3.3 The State Space Form</td>
<td>390</td>
</tr>
<tr>
<td>12.3.4 The Extended Form</td>
<td>392</td>
</tr>
<tr>
<td>12.3.5 Interpretation of the Solutions and Discussion</td>
<td>393</td>
</tr>
<tr>
<td>12.3.6 An Example</td>
<td>397</td>
</tr>
<tr>
<td>12.4 On the Application to Stochastic Systems</td>
<td>398</td>
</tr>
<tr>
<td>12.4.1 Application to Maximizing FDR by a Given FAR</td>
<td>399</td>
</tr>
<tr>
<td>12.4.2 Application to Minimizing FDR by a Given FDR</td>
<td>400</td>
</tr>
<tr>
<td>12.4.3 Equivalence Between the Kalman Filter Scheme and the Unified Solution</td>
<td>400</td>
</tr>
<tr>
<td>12.5 Notes and References</td>
<td>402</td>
</tr>
</tbody>
</table>

13 Fault Isolation Schemes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Essentials</td>
<td>405</td>
</tr>
<tr>
<td>13.1.1 Existence Conditions for a Perfect Fault Isolation</td>
<td>406</td>
</tr>
<tr>
<td>13.1.2 PFIs and Unknown Input Decoupling</td>
<td>408</td>
</tr>
<tr>
<td>13.1.3 PFIs with Unknown Input Decoupling (PFIUID)</td>
<td>411</td>
</tr>
<tr>
<td>13.2 Fault Isolation Filter Design</td>
<td>412</td>
</tr>
<tr>
<td>13.2.1 A Design Approach Based on the Duality to Decoupling Control</td>
<td>413</td>
</tr>
<tr>
<td>13.2.2 The Geometric Approach</td>
<td>416</td>
</tr>
<tr>
<td>13.2.3 A Generalized Design Approach</td>
<td>418</td>
</tr>
<tr>
<td>13.3 An Algebraic Approach to Fault Isolation</td>
<td>427</td>
</tr>
<tr>
<td>13.4 Fault Isolation Using a Bank of Residual Generators</td>
<td>431</td>
</tr>
<tr>
<td>13.4.1 The Dedicated Observer Scheme (DOS)</td>
<td>432</td>
</tr>
<tr>
<td>13.4.2 The Generalized Observer Scheme (GOS)</td>
<td>436</td>
</tr>
<tr>
<td>13.5 Notes and References</td>
<td>439</td>
</tr>
</tbody>
</table>

14 Fault Identification Schemes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Fault Identification Filter Schemes and Perfect Fault Identification</td>
<td>441</td>
</tr>
<tr>
<td>14.1.1 Fault Detection Filters and Existence Conditions</td>
<td>442</td>
</tr>
<tr>
<td>14.1.2 FIF Design with Measurement Derivatives</td>
<td>446</td>
</tr>
<tr>
<td>14.2 On the Optimal FIF Design</td>
<td>449</td>
</tr>
<tr>
<td>14.2.1 Problem Formulation and Solution Study</td>
<td>449</td>
</tr>
<tr>
<td>14.2.2 Study on the Role of the Weighting Matrix</td>
<td>451</td>
</tr>
</tbody>
</table>
14.3 Approaches to the Design of FIF 456
14.3.1 A General Fault Identification Scheme 457
14.3.2 An Alternative Scheme 457
14.3.3 Identification of the Size of a Fault 458
14.3.4 Fault Identification in a Finite Frequency Range 460
14.4 Fault Identification Using an Augmented Observer 461
14.5 An Algebraic Fault Identification Scheme 463
14.6 Adaptive Observer-Based Fault Identification 464
14.6.1 Problem Formulation 464
14.6.2 The Adaptive Observer Scheme 465
14.7 Notes and References 468

15 Fault Diagnosis in Feedback Control Systems and Fault-Tolerant Architecture 471
15.1 Plant and Control Loop Models, Controller and Observer Parameterizations 472
15.1.1 Plant and Control Loop Models 472
15.1.2 Parameterization of Stabilizing Controllers, Observers, and an Alternative Formulation of Controller Design .. 473
15.1.3 Observer and Residual Generator Based Realizations of Youla Parameterization 475
15.1.4 Residual Generation Based Formulation of Controller Design Problem 476
15.2 Residual Extraction in the Standard Feedback Control Loop and a Fault Detection Scheme 478
15.2.1 Signals at the Access Points in the Control Loop 478
15.2.2 A Fault Detection Scheme Based on Extraction of Residual Signals 479
15.3 2-DOF Control Structures and Residual Access 481
15.3.1 The Standard 2-DOF Control Structures 481
15.3.2 An Alternative 2-DOF Control Structure with Residual Access 483
15.4 On Residual Access in the IMC and Residual Generator Based Control Structures 485
15.4.1 An Extended IMC Structure with an Integrated Residual Access 485
15.4.2 A Residual Generator Based Feedback Control Loop ... 487
15.5 Notes and References 488

References .. 491
Index ... 499
Model-Based Fault Diagnosis Techniques
Design Schemes, Algorithms and Tools
Ding, S.
2013, XX, 504 p., Hardcover