Contents

1 **Introduction** 1
References .. 5

2 **System Reliability and Risk Analysis** 7
2.1 System Reliability Analysis 7
2.2 System Risk Analysis 11
 2.2.1 The Framework of PRA 12
 2.2.2 Uncertainty Analysis 14
References ... 16

3 **Monte Carlo Simulation: The Method** 19
3.1 Sampling Random Numbers 19
3.2 The Uniform Random Number Generator: Sampling
 from the Uniform Distribution 20
3.3 Sampling Random Numbers from Generic Distributions 22
 3.3.1 Sampling by the Inverse Transform Method:
 Continuous Distributions 22
 3.3.2 Sampling by the Inverse Transform Method:
 Discrete Distributions 24
 3.3.3 Sampling by the Composition Method 33
 3.3.4 Sampling by the Rejection Method 39
3.4 The Solution of Definite Integrals by Monte Carlo
 Simulation 44
 3.4.1 Analog Simulation 44
 3.4.2 Forced (Biased) Simulation 45
3.5 Sensitivity Analysis by Monte Carlo Simulation 53
 3.5.1 Correlated Sampling 54
 3.5.2 Differential Sampling 56
3.6 Monte Carlo Simulation Error and Quadrature Error 56
References ... 57
4 System Reliability and Risk Analysis by Monte Carlo Simulation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>4.2 Basic Principles of System Reliability Analysis</td>
<td>60</td>
</tr>
<tr>
<td>4.3 The Transport Process of a Stochastic System</td>
<td>61</td>
</tr>
<tr>
<td>4.4 System Reliability Analysis by Monte Carlo Simulation</td>
<td>62</td>
</tr>
<tr>
<td>4.4.1 Indirect Simulation Method</td>
<td>64</td>
</tr>
<tr>
<td>4.4.2 Direct Simulation Method</td>
<td>68</td>
</tr>
<tr>
<td>4.5 Transport Theory for System Reliability</td>
<td>73</td>
</tr>
</tbody>
</table>

References | 81 |

5 Practical Applications of Monte Carlo Simulation for System Reliability Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Monte Carlo Simulation Estimation of the Production Availability of an Offshore Oil Plant</td>
<td>83</td>
</tr>
<tr>
<td>5.2 Monte Carlo Simulation for Sensitivity and Importance Analysis</td>
<td>90</td>
</tr>
<tr>
<td>5.2.1 Case Study 1: Simple System</td>
<td>92</td>
</tr>
<tr>
<td>5.2.2 Case Study 2: The Reactor Protection System</td>
<td>98</td>
</tr>
</tbody>
</table>

References | 107 |

6 Advanced Monte Carlo Simulation Techniques for System Failure Probability Estimation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 General Remarks</td>
<td>109</td>
</tr>
<tr>
<td>6.2 Importance Sampling</td>
<td>110</td>
</tr>
<tr>
<td>6.3 The Cross-Entropy Method.</td>
<td>111</td>
</tr>
<tr>
<td>6.3.1 The Cross-Entropy Method for the Estimation of Rare-Event Probabilities</td>
<td>113</td>
</tr>
<tr>
<td>6.3.2 The Cross-Entropy Method for Combinatorial Optimization</td>
<td>118</td>
</tr>
<tr>
<td>6.4 Latin Hypercube Sampling</td>
<td>121</td>
</tr>
<tr>
<td>6.5 Orthogonal Axis</td>
<td>125</td>
</tr>
<tr>
<td>6.6 Dimensionality Reduction</td>
<td>126</td>
</tr>
<tr>
<td>6.7 Subset Simulation</td>
<td>127</td>
</tr>
<tr>
<td>6.7.1 Markov Chain Monte Carlo Simulation</td>
<td>128</td>
</tr>
<tr>
<td>6.7.2 The Subset Simulation Procedure</td>
<td>131</td>
</tr>
<tr>
<td>6.7.3 Statistical Properties of Estimators</td>
<td>132</td>
</tr>
<tr>
<td>6.7.4 Implementation Issues</td>
<td>135</td>
</tr>
<tr>
<td>6.8 Line Sampling</td>
<td>142</td>
</tr>
<tr>
<td>6.8.1 Transformation of the Physical Space into the Standard Normal Space</td>
<td>142</td>
</tr>
<tr>
<td>6.8.2 The Important Direction for Line Sampling: Interpretation and Identification</td>
<td>144</td>
</tr>
</tbody>
</table>
6.8.3 Minimization of the Variance of the LS Failure Probability Estimator 148
6.8.4 Theoretical Formulation of the LS Method ... 149
6.8.5 The Line Sampling Algorithm .. 151
References ... 154

7 Practical Applications of Advanced Monte Carlo Simulation Techniques for System Failure Probability Estimation 157
 7.1 Subset Simulation Applied to a Series–Parallel Continuous-State System 157
 7.2 Subset Simulation Applied to a Series–Parallel Discrete-State System 163
 7.3 Line Sampling Applied to the Reliability Analysis of a Nuclear Passive Safety System 170
References ... 179

Appendix A: Probability .. 181

Appendix B: HAZID ... 189

Appendix C: Fault Tree Analysis .. 191

Appendix D: Event Tree Analysis ... 195
The Monte Carlo Simulation Method for System Reliability and Risk Analysis
Zio, E.
2013, XIV, 198 p., Hardcover