Contents

1 Introduction 1
 1.1 Need for Control Performance Management (CPM) 2
 1.1.1 Objectives and Importance of Control Assets 3
 1.1.2 State of Industrial Process Control Performance 6
 1.1.3 Root Causes of Control Performance Problems 8
 1.2 Principle and Tasks of Control Performance Management ... 11
 1.2.1 Control Performance Indices 12
 1.2.2 Basic Procedure for Control Performance Management . 14
 1.2.3 Controller Performance Assessment Benchmarks 16
 1.2.4 Challenges of Performance Monitoring Applications ... 17
 1.3 Key Dates of the Development of CPM Technology and Literature Survey .. 18
 1.4 Outline of the Book 22

Part I Evaluation of the Level of Control Performance

2 Assessment Based on Minimum-Variance Principles 29
 2.1 System Descriptions and Basics 29
 2.1.1 Note on Input–Output Models 31
 2.2 Minimum-Variance Control (MVC) 32
 2.3 Auto-Correlation Test for Minimum Variance 36
 2.4 Minimum-Variance Index/Harris Index 38
 2.4.1 Estimation from Time-Series Analysis 39
 2.4.2 Estimation Algorithms 42
 2.5 Assessment of Feedback/Feedforward Controls 49
 2.6 Assessment of Set-Point Tracking and Cascade Control 54
 2.6.1 Performance Assessment of Cascade Control Systems 54
 2.6.2 Assessment of Different Tuning Strategies 60
 2.7 Summary and Conclusions 62

3 User-Specified Benchmarking 65
 3.1 General Setting ... 65
3.2 IMC-Achievable Performance Assessment 66
 3.2.1 IMC Design 67
 3.2.2 IMC Benchmark 70
3.3 Extended Horizon Approach 72
3.4 Performance Index Based on Desired Pole Locations 75
3.5 Historical or Reference Benchmarks 76
3.6 Reference-Model/Relative Performance Index 76
 3.6.1 Selection of the Reference Model 77
 3.6.2 Disturbance Estimation 77
 3.6.3 Selection of Critical Index Value 78
 3.6.4 Index Properties 78
3.7 Summary and Conclusions 78

4 Advanced Control Performance Assessment 81
 4.1 Generalised Minimum-Variance Control (GMVC) Benchmarking . 81
 4.1.1 GMV Control 82
 4.1.2 Selection of Weightings 83
 4.1.3 GMVC with Static Weightings 84
 4.1.4 Assessment Index and Procedure 85
 4.2 Linear-Quadratic Gaussian (LQG) Benchmarking 86
 4.2.1 Classical LQG Framework 89
 4.2.2 Polynomial Domain Approach 89
 4.2.3 LQG Framework as Special Case of MPC 90
 4.2.4 Subspace-Based LQG Design 90
 4.2.5 Generation of the LQG Performance Limit Curve 91
 4.2.6 LQG Assessment Using Routine Operating Data 92
 4.3 Model Predictive Control (MPC) Assessment 96
 4.3.1 Basic Principle and Properties 97
 4.3.2 Constrained Minimum-Variance Control 101
 4.3.3 Design-Case MPC Benchmarking 101
 4.3.4 Infinite-Horizon Model Predictive Control 102
 4.3.5 Assessing the Effect of Constraints 110
 4.3.6 Economic Performance Assessment of MPC 110
 4.4 Summary and Conclusions 117

5 Deterministic Controller Assessment 121
 5.1 Performance Metrics 121
 5.2 Controller Assessment Based on Set-Point Response Data 123
 5.2.1 Normalised Criteria 123
 5.2.2 Assessment Methodology 124
 5.2.3 Determination of Time Delay from Step Response 126
 5.2.4 Application Examples 129
 5.3 Idle Index for Detecting Sluggish Control 131
 5.3.1 Characterisation of Sluggish Control 132
 5.3.2 Idle Index 133
Part II Detection and Diagnosis of Control Performance Problems

8 Statistical Process Control 209
8.1 Univariate Statistical Process Control 209
8.2 Multivariate Statistical Process Control 212
 8.2.1 Principal Component Analysis 212
 8.2.2 Partial Least Squares 214
 8.2.3 Advanced Methods for Multivariate Statistical Process
 Control ... 215
8.3 Use for Control Performance Assessment 216
8.4 Summary and Conclusions 217

9 Detection of Oscillating Control Loops 219
9.1 Root Causes of Poor Performance 219
9.2 Characterisation and Sources of Oscillations in Control Loops 221
9.3 Detection of Peaks in the Power Spectrum 222
9.4 Regularity of “Large Enough” Integral of Absolute Error (IAE) 224
 9.4.1 Load-Disturbance Detection 224
 9.4.2 Basic Approach 225
 9.4.3 Detection Procedure 226
 9.4.4 Method Enhancement for Real-Time Oscillation Detection 226
9.5 Regularity of Upper and Lower Integral of Absolute Errors and
 Zero Crossings .. 228
 9.5.1 Basic Methodology 228
 9.5.2 Practical Conditions and Parameter Selection 229
9.6 Decay Ratio Approach of the Auto-covariance Function 230
 9.6.1 Methodology 230
 9.6.2 Practical Conditions and Parameter Selection 232
9.7 Regularity of Zero Crossings of the Auto-covariance Function 233
9.8 Pitfalls of Multiple Oscillations—Need for Band-Pass Filtering 234
9.9 Detection of Intermittent Oscillations 237
9.10 Summary and Conclusions 237

10 Detection of Loop Nonlinearities 239
10.1 Methods Review 240
10.2 Bicoherence Technique 241
 10.2.1 Non-Gaussianity Index 242
 10.2.2 Nonlinearity Index 243
 10.2.3 Procedure and Practical Conditions 244
10.2.4 Modified Indices 246
10.3 Surrogate Data Analysis 248
 10.3.1 Generation of Surrogate Data 248
 10.3.2 Discriminating Statistics—Nonlinear Predictability
 Index .. 250
10.3.3 Nonlinearity Detection Procedure 251
10.3.4 Spurious Nonlinearity—Pitfalls in the Surrogate Data 252
10.3.5 Default Parameter Values and Practical Issues 255
10.4 Detection of Saturated Actuators .. 256
10.4.1 Saturation Test Based on Statistical Distribution 257
10.4.2 Saturation Index for Valve Monitoring 258
10.5 Comparative Studies ... 258
10.5.1 Unit-Wide Oscillation Caused by a Sensor Fault 259
10.5.2 Plant-Wide Oscillation Caused by a Valve Fault 261
10.6 Summary and Conclusions .. 263

11 Diagnosis of Stiction-Related Actuator Problems 265
11.1 Typical Valve-Controlled Loop ... 266
11.2 Effects Relating to Valve Nonlinearity 268
11.3 Stiction Analysis ... 269
11.3.1 Effect of Stiction in Control Loops 269
11.3.2 Physically Based Stiction Modelling 271
11.3.3 Data-Driven Stiction Modelling 272
11.3.4 Typical Trends of Variables and Input–Output Shape Analysis ... 274
11.4 Stiction Diagnosis Based on Shape Analysis of MV–OP Plots 277
11.4.1 Stuck Indices .. 278
11.5 Cross-Correlation-Based Stiction Detection 281
11.6 Diagnosis Based on Curve Fitting 284
11.6.1 Sinusoidal Fitting .. 285
11.6.2 Triangular Fitting .. 286
11.6.3 Stiction Index and Detection Procedure 286
11.6.4 Similar Techniques .. 288
11.7 Nonlinearity Detection and PV–OP Pattern Analysis 289
11.7.1 Stiction Detection and Estimation Procedure 289
11.7.2 Practical Issues .. 292
11.8 Tests to Confirm Stiction .. 294
11.8.1 Controller Gain Change Test ... 295
11.8.2 Valve Travel or Bump Test .. 296
11.9 Stiction Diagnosis Procedure ... 297
11.10 Summary and Conclusions .. 299

12 Complete Oscillation Diagnosis Based on Hammerstein Modelling ... 301
12.1 Features of the Proposed Framework 302
12.2 Identification Model Structure ... 303
12.3 Identification Algorithm .. 305
12.3.1 Linear Model Estimation ... 305
12.3.2 Nonlinear Model Estimation .. 308
12.4 Key Issues ... 311
12.4.1 Model Structure Selection ... 311
12.4.2 Determination of Initial Parameters and Incorporation of Constraints ... 312
12.5 Application and Results .. 313
 12.5.1 Simulation Studies .. 313
 12.5.2 Industrial Case Studies 314
12.6 Detection of Multiple Loop Faults 320
 12.6.1 Simulation Examples ... 323
 12.6.2 Industrial Examples .. 324
12.7 Summary and Conclusions 329

Part III Performance Improvement

13 Performance Monitoring and Improvement Strategies 333
 13.1 Performance Improvement Measures 333
 13.2 Loop Monitoring Paradigms 335
 13.2.1 Bottom-Up and Top-Down Approaches 335
 13.2.2 Loop Prioritisation and Ranking 337
 13.2.3 Relationship to Economical Benefits 337
 13.3 Comprehensive Procedure for Performance Monitoring 338
 13.4 Summary and Conclusions .. 341

14 Controller Auto-Tuning Based on Control Performance Monitoring 343
 14.1 Basic Concepts of Controller Auto-Tuning and Adaptation 345
 14.2 Overview and Classification of CPM-Based Tuning Methods 346
 14.3 Optimisation-Based Assessment and Tuning 347
 14.3.1 Methods Based on Complete Knowledge of System Model 347
 14.3.2 Techniques Based on Routine and Set-Point Response Data 356
 14.4 Iterative Controller Assessment and Tuning 362
 14.4.1 Techniques Based on Load Disturbance Changes 362
 14.4.2 Methods Based on Routine Data and Impulse Response Assessment 366
 14.5 Strategies for Variation of Controller Parameters 380
 14.5.1 Variation of Proportional Gain Alone and Fine Tuning of Integral Time 380
 14.5.2 Simultaneous Variation 381
 14.5.3 Successive Variation 381
 14.5.4 Constraints and Loop Stability 382
 14.6 Comparative Studies ... 383
 14.7 Summary and Conclusions .. 385

Part IV Applications and Tools

15 Industrial CPM Technology and Applications 389
 15.1 Demands on Performance Monitoring Algorithms 389
 15.2 Review of Control Performance Monitoring Applications 391
 15.2.1 Analysis of Fields of Application 393
15.2.2 Analysis of Type of Implemented Methods 393
15.3 Review of Control Performance Monitoring Systems 393
 15.3.1 CPM Tools and Prototypes 393
 15.3.2 Commercial Products 394
15.4 Summary and Conclusions 396
15.5 Summary of Industrial Case Studies 397

16 Performance Monitoring of Metal Processing Control Systems .. 403
 16.1 Introduction to the Metal Processing Technology 404
 16.1.1 Steel Processing Route and Control Objectives 404
 16.1.2 Control Objectives 406
 16.1.3 Mill Automation 409
 16.1.4 Overview of Metal Processing Control Systems 411
 16.1.5 Technological Control Systems 414
 16.2 Practical Aspects of Performance Assessment in Metal Processing 415
 16.2.1 Online vs. Batch-Wise Evaluation 415
 16.2.2 Oscillation Diagnosis 416
 16.2.3 Time-Based vs. Length-Based Assessment 417
 16.2.4 User-Specified Indices 418
 16.3 Industrial Cases Studies and Developed Monitoring Tools 418
 16.3.1 Gauge Control in Cold Tandem Mills 419
 16.3.2 Flatness Control in Cold Tandem Mills 424
 16.3.3 Temperature Control in Annealing Lines 427
 16.4 Summary and Conclusions 439

Appendix A Basic Signal Processing and Statistics 441
 A.1 Ergodicity ... 441
 A.2 Expectation and Variance 441
 A.3 Correlation and Covariance 442
 A.4 Discrete Fourier Transform 443
 A.5 Power Spectrum and Coherence Function 444

Appendix B Higher-Order Statistics 447
 B.1 Moments and Cumulants 447
 B.2 Polyspectra and Coherence Functions 449
 B.3 Estimating the Bispectrum from Data 451
 B.4 Skewness and Squared Bicoherence Functions 452

Appendix C Control Loops from Different Industries 457

References .. 461

Index ... 481
Control Performance Management in Industrial Automation
Assessment, Diagnosis and Improvement of Control Loop Performance
Jelali, M.
2013, XXVII, 480 p., Hardcover