Contents

1 Introduction .. 1
 1.1 Need for Control Performance Management (CPM) 2
 1.1.1 Objectives and Importance of Control Assets 3
 1.1.2 State of Industrial Process Control Performance 6
 1.1.3 Root Causes of Control Performance Problems 8
 1.2 Principle and Tasks of Control Performance Management .. 11
 1.2.1 Control Performance Indices 12
 1.2.2 Basic Procedure for Control Performance Management .. 14
 1.2.3 Controller Performance Assessment Benchmarks 16
 1.2.4 Challenges of Performance Monitoring Applications ... 17
 1.3 Key Dates of the Development of CPM Technology and Literature Survey 18
 1.4 Outline of the Book ... 22

Part I Evaluation of the Level of Control Performance

2 Assessment Based on Minimum-Variance Principles 29
 2.1 System Descriptions and Basics 29
 2.1.1 Note on Input–Output Models 31
 2.2 Minimum-Variance Control (MVC) 32
 2.3 Auto-Correlation Test for Minimum Variance 36
 2.4 Minimum-Variance Index/Harris Index 38
 2.4.1 Estimation from Time-Series Analysis 39
 2.4.2 Estimation Algorithms 42
 2.5 Assessment of Feedback/Feedforward Controls 49
 2.6 Assessment of Set-Point Tracking and Cascade Control 54
 2.6.1 Performance Assessment of Cascade Control Systems ... 54
 2.6.2 Assessment of Different Tuning Strategies 60
 2.7 Summary and Conclusions 62

3 User-Specified Benchmarking 65
 3.1 General Setting ... 65
Contents

3.2 IMC-Achievable Performance Assessment ... 66
 3.2.1 IMC Design .. 67
 3.2.2 IMC Benchmark ... 70
3.3 Extended Horizon Approach ... 72
3.4 Performance Index Based on Desired Pole Locations 75
3.5 Historical or Reference Benchmarks .. 76
3.6 Reference-Model/Relative Performance Index 76
 3.6.1 Selection of the Reference Model ... 77
 3.6.2 Disturbance Estimation ... 77
 3.6.3 Selection of Critical Index Value ... 78
 3.6.4 Index Properties .. 78
3.7 Summary and Conclusions ... 78

4 Advanced Control Performance Assessment ... 81
 4.1 Generalised Minimum-Variance Control (GMVC) Benchmarking 81
 4.1.1 GMVC Control .. 82
 4.1.2 Selection of Weightings ... 83
 4.1.3 GMVC with Static Weightings .. 84
 4.1.4 Assessment Index and Procedure .. 85
 4.2 Linear-Quadratic Gaussian (LQG) Benchmarking 86
 4.2.1 Classical LQG Framework .. 89
 4.2.2 Polynomial Domain Approach ... 89
 4.2.3 LQG Framework as Special Case of MPC 90
 4.2.4 Subspace-Based LQG Design ... 90
 4.2.5 Generation of the LQG Performance Limit Curve 91
 4.2.6 LQG Assessment Using Routine Operating Data 92
 4.3 Model Predictive Control (MPC) Assessment 96
 4.3.1 Basic Principle and Properties ... 97
 4.3.2 Constrained Minimum-Variance Control 101
 4.3.3 Design-Case MPC Benchmarking 101
 4.3.4 Infinite-Horizon Model Predictive Control 102
 4.3.5 Assessing the Effect of Constraints 110
 4.3.6 Economic Performance Assessment of MPC 110
 4.4 Summary and Conclusions .. 117

5 Deterministic Controller Assessment ... 121
 5.1 Performance Metrics ... 121
 5.2 Controller Assessment Based on Set-Point Response Data 123
 5.2.1 Normalised Criteria ... 123
 5.2.2 Assessment Methodology .. 124
 5.2.3 Determination of Time Delay from Step Response 126
 5.2.4 Application Examples .. 129
 5.3 Idle Index for Detecting Sluggish Control 131
 5.3.1 Characterisation of Sluggish Control 132
 5.3.2 Idle Index ... 133
Part II Detection and Diagnosis of Control Performance Problems

8 Statistical Process Control ... 209
8.1 Univariate Statistical Process Control 209
8.2 Multivariate Statistical Process Control 212
8.2.1 Principal Component Analysis 212
8.2.2 Partial Least Squares ... 214
8.2.3 Advanced Methods for Multivariate Statistical Process
 Control ... 215
8.3 Use for Control Performance Assessment 216
8.4 Summary and Conclusions ... 217

9 Detection of Oscillating Control Loops 219
9.1 Root Causes of Poor Performance 219
9.2 Characterisation and Sources of Oscillations in Control Loops . 221
9.3 Detection of Peaks in the Power Spectrum 222
9.4 Regularity of “Large Enough” Integral of Absolute Error (IAE) 224
 9.4.1 Load-Disturbance Detection 224
 9.4.2 Basic Approach .. 225
 9.4.3 Detection Procedure ... 226
 9.4.4 Method Enhancement for Real-Time Oscillation Detection 226
9.5 Regularity of Upper and Lower Integral of Absolute Errors and
 Zero Crossings .. 228
 9.5.1 Basic Methodology .. 228
 9.5.2 Practical Conditions and Parameter Selection 229
9.6 Decay Ratio Approach of the Auto-covariance Function 230
 9.6.1 Methodology .. 230
 9.6.2 Practical Conditions and Parameter Selection 232
9.7 Regularity of Zero Crossings of the Auto-covariance Function 233
9.8 Pitfalls of Multiple Oscillations—Need for Band-Pass Filtering 234
9.9 Detection of Intermittent Oscillations 237
9.10 Summary and Conclusions ... 237

10 Detection of Loop Nonlinearities 239
10.1 Methods Review ... 240
10.2 Bicoherence Technique .. 241
 10.2.1 Non-Gaussianity Index 242
 10.2.2 Nonlinearity Index .. 243
 10.2.3 Procedure and Practical Conditions 244
 10.2.4 Modified Indices .. 246
10.3 Surrogate Data Analysis .. 248
 10.3.1 Generation of Surrogate Data 248
 10.3.2 Discriminating Statistics—Nonlinear Predictability
 Index ... 250
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.3</td>
<td>Nonlinearity Detection Procedure</td>
<td>251</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Spurious Nonlinearity—Pitfalls in the Surrogate Data</td>
<td>252</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Default Parameter Values and Practical Issues</td>
<td>255</td>
</tr>
<tr>
<td>10.4</td>
<td>Detection of Saturated Actuators</td>
<td>256</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Saturation Test Based on Statistical Distribution</td>
<td>257</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Saturation Index for Valve Monitoring</td>
<td>258</td>
</tr>
<tr>
<td>10.5</td>
<td>Comparative Studies</td>
<td>258</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Unit-Wide Oscillation Caused by a Sensor Fault</td>
<td>259</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Plant-Wide Oscillation Caused by a Valve Fault</td>
<td>261</td>
</tr>
<tr>
<td>10.6</td>
<td>Summary and Conclusions</td>
<td>263</td>
</tr>
<tr>
<td>11</td>
<td>Diagnosis of Stiction-Related Actuator Problems</td>
<td>265</td>
</tr>
<tr>
<td>11.1</td>
<td>Typical Valve-Controlled Loop</td>
<td>266</td>
</tr>
<tr>
<td>11.2</td>
<td>Effects Relating to Valve Nonlinearity</td>
<td>268</td>
</tr>
<tr>
<td>11.3</td>
<td>Stiction Analysis</td>
<td>269</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Effect of Stiction in Control Loops</td>
<td>269</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Physically Based Stiction Modelling</td>
<td>271</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Data-Driven Stiction Modelling</td>
<td>272</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Typical Trends of Variables and Input–Output Shape Analysis</td>
<td>274</td>
</tr>
<tr>
<td>11.4</td>
<td>Stiction Diagnosis Based on Shape Analysis of MV–OP Plots</td>
<td>277</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Stuck Indices</td>
<td>278</td>
</tr>
<tr>
<td>11.5</td>
<td>Cross-Correlation-Based Stiction Detection</td>
<td>281</td>
</tr>
<tr>
<td>11.6</td>
<td>Diagnosis Based on Curve Fitting</td>
<td>284</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Sinusoidal Fitting</td>
<td>285</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Triangular Fitting</td>
<td>286</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Stiction Index and Detection Procedure</td>
<td>286</td>
</tr>
<tr>
<td>11.6.4</td>
<td>Similar Techniques</td>
<td>288</td>
</tr>
<tr>
<td>11.7</td>
<td>Nonlinearity Detection and PV–OP Pattern Analysis</td>
<td>289</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Stiction Detection and Estimation Procedure</td>
<td>289</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Practical Issues</td>
<td>292</td>
</tr>
<tr>
<td>11.8</td>
<td>Tests to Confirm Stiction</td>
<td>294</td>
</tr>
<tr>
<td>11.8.1</td>
<td>Controller Gain Change Test</td>
<td>295</td>
</tr>
<tr>
<td>11.8.2</td>
<td>Valve Travel or Bump Test</td>
<td>296</td>
</tr>
<tr>
<td>11.9</td>
<td>Stiction Diagnosis Procedure</td>
<td>297</td>
</tr>
<tr>
<td>11.10</td>
<td>Summary and Conclusions</td>
<td>299</td>
</tr>
<tr>
<td>12</td>
<td>Complete Oscillation Diagnosis Based on Hammerstein Modelling</td>
<td>301</td>
</tr>
<tr>
<td>12.1</td>
<td>Features of the Proposed Framework</td>
<td>302</td>
</tr>
<tr>
<td>12.2</td>
<td>Identification Model Structure</td>
<td>303</td>
</tr>
<tr>
<td>12.3</td>
<td>Identification Algorithm</td>
<td>305</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Linear Model Estimation</td>
<td>305</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Nonlinear Model Estimation</td>
<td>308</td>
</tr>
<tr>
<td>12.4</td>
<td>Key Issues</td>
<td>311</td>
</tr>
</tbody>
</table>
12.4.2 Determination of Initial Parameters and Incorporation of Constraints ... 312
12.5 Application and Results ... 313
12.5.1 Simulation Studies ... 313
12.5.2 Industrial Case Studies ... 314
12.6 Detection of Multiple Loop Faults ... 320
12.6.1 Simulation Examples ... 323
12.6.2 Industrial Examples ... 324
12.7 Summary and Conclusions ... 329

Part III Performance Improvement

13 Performance Monitoring and Improvement Strategies 333
13.1 Performance Improvement Measures ... 333
13.2 Loop Monitoring Paradigms ... 335
 13.2.1 Bottom-Up and Top-Down Approaches ... 335
 13.2.2 Loop Prioritisation and Ranking ... 337
 13.2.3 Relationship to Economical Benefits ... 337
13.3 Comprehensive Procedure for Performance Monitoring ... 338
13.4 Summary and Conclusions ... 341

14 Controller Auto-Tuning Based on Control Performance Monitoring . 343
14.1 Basic Concepts of Controller Auto-Tuning and Adaptation ... 345
14.2 Overview and Classification of CPM-Based Tuning Methods ... 346
14.3 Optimisation-Based Assessment and Tuning ... 347
 14.3.1 Methods Based on Complete Knowledge of System Model ... 347
 14.3.2 Techniques Based on Routine and Set-Point Response Data ... 356
14.4 Iterative Controller Assessment and Tuning ... 362
 14.4.1 Techniques Based on Load Disturbance Changes ... 362
 14.4.2 Methods Based on Routine Data and Impulse Response Assessment ... 366
14.5 Strategies for Variation of Controller Parameters ... 380
 14.5.1 Variation of Proportional Gain Alone and Fine Tuning of Integral Time ... 380
 14.5.2 Simultaneous Variation ... 381
 14.5.3 Successive Variation ... 381
 14.5.4 Constraints and Loop Stability ... 382
14.6 Comparative Studies ... 383
14.7 Summary and Conclusions ... 385

Part IV Applications and Tools

15 Industrial CPM Technology and Applications 389
15.1 Demands on Performance Monitoring Algorithms ... 389
15.2 Review of Control Performance Monitoring Applications ... 391
 15.2.1 Analysis of Fields of Application ... 393
15.2.2 Analysis of Type of Implemented Methods 393
15.3 Review of Control Performance Monitoring Systems 393
 15.3.1 CPM Tools and Prototypes 393
 15.3.2 Commercial Products 394
15.4 Summary and Conclusions 396
15.5 Summary of Industrial Case Studies 397
16 Performance Monitoring of Metal Processing Control Systems 403
 16.1 Introduction to the Metal Processing Technology 404
 16.1.1 Steel Processing Route and Control Objectives 404
 16.1.2 Control Objectives 406
 16.1.3 Mill Automation 409
 16.1.4 Overview of Metal Processing Control Systems 411
 16.1.5 Technological Control Systems 414
 16.2 Practical Aspects of Performance Assessment in Metal Processing 415
 16.2.1 Online vs. Batch-Wise Evaluation 415
 16.2.2 Oscillation Diagnosis 416
 16.2.3 Time-Based vs. Length-Based Assessment 417
 16.2.4 User-Specified Indices 418
 16.3 Industrial Cases Studies and Developed Monitoring Tools 418
 16.3.1 Gauge Control in Cold Tandem Mills 419
 16.3.2 Flatness Control in Cold Tandem Mills 424
 16.3.3 Temperature Control in Annealing Lines 427
 16.4 Summary and Conclusions 439

Appendix A Basic Signal Processing and Statistics 441
 A.1 Ergodicity ... 441
 A.2 Expectation and Variance 441
 A.3 Correlation and Covariance 442
 A.4 Discrete Fourier Transform 443
 A.5 Power Spectrum and Coherence Function 444

Appendix B Higher-Order Statistics 447
 B.1 Moments and Cumulants 447
 B.2 Polyspectra and Coherence Functions 449
 B.3 Estimating the Bispectrum from Data 451
 B.4 Skewness and Squared Bicoherence Functions 452

Appendix C Control Loops from Different Industries 457

References ... 461

Index .. 481
Control Performance Management in Industrial Automation Assessment, Diagnosis and Improvement of Control Loop Performance
Jelali, M.
2013, XXVII, 480 p., Hardcover