Contents

1 Introduction .. 1
 1.1 Need for Control Performance Management (CPM) 2
 1.1.1 Objectives and Importance of Control Assets 3
 1.1.2 State of Industrial Process Control Performance 6
 1.1.3 Root Causes of Control Performance Problems 8
 1.2 Principle and Tasks of Control Performance Management 11
 1.2.1 Control Performance Indices 12
 1.2.2 Basic Procedure for Control Performance Management 14
 1.2.3 Controller Performance Assessment Benchmarks 16
 1.2.4 Challenges of Performance Monitoring Applications ... 17
 1.3 Key Dates of the Development of CPM Technology and Literature Survey .. 18
 1.4 Outline of the Book .. 22

Part I Evaluation of the Level of Control Performance

2 Assessment Based on Minimum-Variance Principles 29
 2.1 System Descriptions and Basics 29
 2.1.1 Note on Input–Output Models 31
 2.2 Minimum-Variance Control (MVC) 32
 2.3 Auto-Correlation Test for Minimum Variance 36
 2.4 Minimum-Variance Index/Harris Index 38
 2.4.1 Estimation from Time-Series Analysis 39
 2.4.2 Estimation Algorithms 42
 2.5 Assessment of Feedback/Feedforward Controls 49
 2.6 Assessment of Set-Point Tracking and Cascade Control 54
 2.6.1 Performance Assessment of Cascade Control Systems .. 54
 2.6.2 Assessment of Different Tuning Strategies 60
 2.7 Summary and Conclusions 62

3 User-Specified Benchmarking 65
 3.1 General Setting .. 65
3.2 IMC-Achievable Performance Assessment 66
 3.2.1 IMC Design 67
 3.2.2 IMC Benchmark 70
3.3 Extended Horizon Approach 72
3.4 Performance Index Based on Desired Pole Locations 75
3.5 Historical or Reference Benchmarks 76
3.6 Reference-Model/Relative Performance Index 76
 3.6.1 Selection of the Reference Model 77
 3.6.2 Disturbance Estimation 77
 3.6.3 Selection of Critical Index Value 78
 3.6.4 Index Properties 78
3.7 Summary and Conclusions 78
4 Advanced Control Performance Assessment 81
 4.1 Generalised Minimum-Variance Control (GMVC) Benchmarking 81
 4.1.1 GMV Control 82
 4.1.2 Selection of Weightings 83
 4.1.3 GMVC with Static Weightings 84
 4.1.4 Assessment Index and Procedure 85
 4.2 Linear-Quadratic Gaussian (LQG) Benchmarking 86
 4.2.1 Classical LQG Framework 89
 4.2.2 Polynomial Domain Approach 89
 4.2.3 LQG Framework as Special Case of MPC 90
 4.2.4 Subspace-Based LQG Design 90
 4.2.5 Generation of the LQG Performance Limit Curve 91
 4.2.6 LQG Assessment Using Routine Operating Data 92
 4.3 Model Predictive Control (MPC) Assessment 96
 4.3.1 Basic Principle and Properties 97
 4.3.2 Constrained Minimum-Variance Control 101
 4.3.3 Design-Case MPC Benchmarking 101
 4.3.4 Infinite-Horizon Model Predictive Control 102
 4.3.5 Assessing the Effect of Constraints 110
 4.3.6 Economic Performance Assessment of MPC 110
 4.4 Summary and Conclusions 117
5 Deterministic Controller Assessment 121
 5.1 Performance Metrics 121
 5.2 Controller Assessment Based on Set-Point Response Data 123
 5.2.1 Normalised Criteria 123
 5.2.2 Assessment Methodology 124
 5.2.3 Determination of Time Delay from Step Response 126
 5.2.4 Application Examples 129
 5.3 Idle Index for Detecting Sluggish Control 131
 5.3.1 Characterisation of Sluggish Control 132
 5.3.2 Idle Index 133
5.3.3 Practical Conditions and Parameter Selection 134
5.3.4 Illustrative Example ... 136
5.4 Assessment of Load Disturbance Rejection Performance 138
 5.4.1 Methodology .. 138
 5.4.2 Practical Conditions ... 140
 5.4.3 Illustrative Example ... 141
5.5 Comparative Simulation Studies 143
5.6 Summary and Conclusions .. 144
6 Minimum-Variance Assessment of Multivariable Control Systems .. 147
 6.1 Interactor Matrix: Time-Delay Analogy 147
 6.1.1 Definition and Special Forms 147
 6.1.2 Recursive Determination of Unitary Interactor Matrices .. 149
 6.1.3 Estimation from Closed-Loop Identification 153
 6.2 Interactor-Matrix-Based Minimum-Variance Control Law 156
 6.3 Assessment Based on the Interactor Matrix 157
 6.4 Assessment Without Knowledge of the Interactor Matrix 162
 6.4.1 Lower Bound of MIMO Performance Index 163
 6.4.2 Upper Bound of MIMO Minimum Variance Benchmark 165
 6.4.3 Recommended Procedure for the Assessment of MIMO
 Control Systems ... 165
 6.5 Summary and Conclusions .. 169
7 Selection of Key Factors and Parameters in Assessment Algorithms .. 171
 7.1 Data Pre-processing .. 171
 7.1.1 Selection of Sampling Interval 172
 7.1.2 Selection of Data Length 173
 7.1.3 Removing of Outliers, Detrending and Pre-filtering 175
 7.1.4 Effect of Smoothing, Compression and Quantisation 176
 7.2 Prediction Models and Identification Methods 178
 7.2.1 Implication of the Use of Routine Operating Data 178
 7.2.2 Role of the Estimated Model 179
 7.2.3 AR(X)-Type Models .. 180
 7.2.4 ARI(X)-Type Models 182
 7.2.5 Laguerre Networks ... 182
 7.2.6 Model-Free (Subspace) Identification 185
 7.2.7 Estimation of Process Models from Routine Operating
 Data ... 186
 7.3 Selection of Model Parameters 195
 7.3.1 Time Delay Estimation 196
 7.3.2 Model Order Selection 198
 7.4 Comparative Study of Different Identification Techniques 200
 7.4.1 AR vs. ARMA Modelling 202
 7.4.2 Subspace Identification 203
 7.4.3 Performance of the FCOR Algorithm 203
 7.4.4 Use of Laguerre Networks 204
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4.2 Determination of Initial Parameters and Incorporation of Constraints</td>
<td>312</td>
</tr>
<tr>
<td>12.5 Application and Results</td>
<td>313</td>
</tr>
<tr>
<td>12.5.1 Simulation Studies</td>
<td>313</td>
</tr>
<tr>
<td>12.5.2 Industrial Case Studies</td>
<td>314</td>
</tr>
<tr>
<td>12.6 Detection of Multiple Loop Faults</td>
<td>320</td>
</tr>
<tr>
<td>12.6.1 Simulation Examples</td>
<td>323</td>
</tr>
<tr>
<td>12.6.2 Industrial Examples</td>
<td>324</td>
</tr>
<tr>
<td>12.7 Summary and Conclusions</td>
<td>329</td>
</tr>
<tr>
<td>Part III Performance Improvement</td>
<td></td>
</tr>
<tr>
<td>13 Performance Monitoring and Improvement Strategies</td>
<td>333</td>
</tr>
<tr>
<td>13.1 Performance Improvement Measures</td>
<td>333</td>
</tr>
<tr>
<td>13.2 Loop Monitoring Paradigms</td>
<td>335</td>
</tr>
<tr>
<td>13.2.1 Bottom-Up and Top-Down Approaches</td>
<td>335</td>
</tr>
<tr>
<td>13.2.2 Loop Prioritisation and Ranking</td>
<td>337</td>
</tr>
<tr>
<td>13.2.3 Relationship to Economical Benefits</td>
<td>337</td>
</tr>
<tr>
<td>13.3 Comprehensive Procedure for Performance Monitoring</td>
<td>338</td>
</tr>
<tr>
<td>13.4 Summary and Conclusions</td>
<td>341</td>
</tr>
<tr>
<td>14 Controller Auto-Tuning Based on Control Performance Monitoring</td>
<td>343</td>
</tr>
<tr>
<td>14.1 Basic Concepts of Controller Auto-Tuning and Adaptation</td>
<td>345</td>
</tr>
<tr>
<td>14.2 Overview and Classification of CPM-Based Tuning Methods</td>
<td>346</td>
</tr>
<tr>
<td>14.3 Optimisation-Based Assessment and Tuning</td>
<td>347</td>
</tr>
<tr>
<td>14.3.1 Methods Based on Complete Knowledge of System Model</td>
<td>347</td>
</tr>
<tr>
<td>14.3.2 Techniques Based on Routine and Set-Point Response Data</td>
<td>356</td>
</tr>
<tr>
<td>14.4 Iterative Controller Assessment and Tuning</td>
<td>362</td>
</tr>
<tr>
<td>14.4.1 Techniques Based on Load Disturbance Changes</td>
<td>362</td>
</tr>
<tr>
<td>14.4.2 Methods Based on Routine Data and Impulse Response Assessment</td>
<td>366</td>
</tr>
<tr>
<td>14.5 Strategies for Variation of Controller Parameters</td>
<td>380</td>
</tr>
<tr>
<td>14.5.1 Variation of Proportional Gain Alone and Fine Tuning of Integral Time</td>
<td>380</td>
</tr>
<tr>
<td>14.5.2 Simultaneous Variation</td>
<td>381</td>
</tr>
<tr>
<td>14.5.3 Successive Variation</td>
<td>381</td>
</tr>
<tr>
<td>14.5.4 Constraints and Loop Stability</td>
<td>382</td>
</tr>
<tr>
<td>14.6 Comparative Studies</td>
<td>383</td>
</tr>
<tr>
<td>14.7 Summary and Conclusions</td>
<td>385</td>
</tr>
<tr>
<td>Part IV Applications and Tools</td>
<td></td>
</tr>
<tr>
<td>15 Industrial CPM Technology and Applications</td>
<td>389</td>
</tr>
<tr>
<td>15.1 Demands on Performance Monitoring Algorithms</td>
<td>389</td>
</tr>
<tr>
<td>15.2 Review of Control Performance Monitoring Applications</td>
<td>391</td>
</tr>
<tr>
<td>15.2.1 Analysis of Fields of Application</td>
<td>393</td>
</tr>
</tbody>
</table>
15.2.2 Analysis of Type of Implemented Methods 393
15.3 Review of Control Performance Monitoring Systems 393
 15.3.1 CPM Tools and Prototypes.......................... 393
 15.3.2 Commercial Products 394
15.4 Summary and Conclusions 396
15.5 Summary of Industrial Case Studies 397

16 Performance Monitoring of Metal Processing Control Systems 403
 16.1 Introduction to the Metal Processing Technology 404
 16.1.1 Steel Processing Route and Control Objectives 404
 16.1.2 Control Objectives 406
 16.1.3 Mill Automation 409
 16.1.4 Overview of Metal Processing Control Systems 411
 16.1.5 Technological Control Systems 414
 16.2 Practical Aspects of Performance Assessment in Metal Processing 415
 16.2.1 Online vs. Batch-Wise Evaluation 415
 16.2.2 Oscillation Diagnosis 416
 16.2.3 Time-Based vs. Length-Based Assessment 417
 16.2.4 User-Specified Indices 418
 16.3 Industrial Cases Studies and Developed Monitoring Tools 418
 16.3.1 Gauge Control in Cold Tandem Mills 419
 16.3.2 Flatness Control in Cold Tandem Mills 424
 16.3.3 Temperature Control in Annealing Lines 427
 16.4 Summary and Conclusions 439

Appendix A Basic Signal Processing and Statistics 441
 A.1 Ergodicity ... 441
 A.2 Expectation and Variance 441
 A.3 Correlation and Covariance 442
 A.4 Discrete Fourier Transform 443
 A.5 Power Spectrum and Coherence Function 444

Appendix B Higher-Order Statistics 447
 B.1 Moments and Cumulants 447
 B.2 Polyspectra and Coherence Functions 449
 B.3 Estimating the Bispectrum from Data 451
 B.4 Skewness and Squared Bicoherence Functions 452

Appendix C Control Loops from Different Industries 457

References .. 461

Index ... 481
Control Performance Management in Industrial Automation
Assessment, Diagnosis and Improvement of Control Loop Performance
Jelali, M.
2013, XXVII, 480 p., Hardcover