Contents

1 Introduction .. 1
 1.1 Need for Control Performance Management (CPM) 2
 1.1.1 Objectives and Importance of Control Assets 3
 1.1.2 State of Industrial Process Control Performance 6
 1.1.3 Root Causes of Control Performance Problems 8
 1.2 Principle and Tasks of Control Performance Management ... 11
 1.2.1 Control Performance Indices 12
 1.2.2 Basic Procedure for Control Performance Management . 14
 1.2.3 Controller Performance Assessment Benchmarks 16
 1.2.4 Challenges of Performance Monitoring Applications .. 17
 1.3 Key Dates of the Development of CPM Technology and Literature Survey 18
 1.4 Outline of the Book 22

Part I Evaluation of the Level of Control Performance

2 Assessment Based on Minimum-Variance Principles 29
 2.1 System Descriptions and Basics 29
 2.1.1 Note on Input–Output Models 31
 2.2 Minimum-Variance Control (MVC) 32
 2.3 Auto-Correlation Test for Minimum Variance 36
 2.4 Minimum-Variance Index/Harris Index 38
 2.4.1 Estimation from Time-Series Analysis 39
 2.4.2 Estimation Algorithms 42
 2.5 Assessment of Feedback/Feedforward Controls 49
 2.6 Assessment of Set-Point Tracking and Cascade Control 54
 2.6.1 Performance Assessment of Cascade Control Systems . 54
 2.6.2 Assessment of Different Tuning Strategies 60
 2.7 Summary and Conclusions 62

3 User-Specified Benchmarking 65
 3.1 General Setting 65
3.2 IMC-Achievable Performance Assessment

- **3.2.1 IMC Design**
- **3.2.2 IMC Benchmark**

3.3 Extended Horizon Approach

3.4 Performance Index Based on Desired Pole Locations

3.5 Historical or Reference Benchmarks

3.6 Reference-Model/Relative Performance Index

- **3.6.1 Selection of the Reference Model**
- **3.6.2 Disturbance Estimation**
- **3.6.3 Selection of Critical Index Value**
- **3.6.4 Index Properties**

3.7 Summary and Conclusions

4 Advanced Control Performance Assessment

4.1 Generalised Minimum-Variance Control (GMVC) Benchmarking

- **4.1.1 GMV Control**
- **4.1.2 Selection of Weightings**
- **4.1.3 GMVC with Static Weightings**
- **4.1.4 Assessment Index and Procedure**

4.2 Linear-Quadratic Gaussian (LQG) Benchmarking

- **4.2.1 Classical LQG Framework**
- **4.2.2 Polynomial Domain Approach**
- **4.2.3 LQG Framework as Special Case of MPC**
- **4.2.4 Subspace-Based LQG Design**
- **4.2.5 Generation of the LQG Performance Limit Curve**
- **4.2.6 LQG Assessment Using Routine Operating Data**

4.3 Model Predictive Control (MPC) Assessment

- **4.3.1 Basic Principle and Properties**
- **4.3.2 Constrained Minimum-Variance Control**
- **4.3.3 Design-Case MPC Benchmarking**
- **4.3.4 Infinite-Horizon Model Predictive Control**
- **4.3.5 Assessing the Effect of Constraints**
- **4.3.6 Economic Performance Assessment of MPC**

4.4 Summary and Conclusions

5 Deterministic Controller Assessment

5.1 Performance Metrics

5.2 Controller Assessment Based on Set-Point Response Data

- **5.2.1 Normalised Criteria**
- **5.2.2 Assessment Methodology**
- **5.2.3 Determination of Time Delay from Step Response**
- **5.2.4 Application Examples**

5.3 Idle Index for Detecting Sluggish Control

- **5.3.1 Characterisation of Sluggish Control**
- **5.3.2 Idle Index**

Contents

- **3.2 IMC-Achievable Performance Assessment**
- **3.2.1 IMC Design**
- **3.2.2 IMC Benchmark**
- **3.3 Extended Horizon Approach**
- **3.4 Performance Index Based on Desired Pole Locations**
- **3.5 Historical or Reference Benchmarks**
- **3.6 Reference-Model/Relative Performance Index**
- **3.6.1 Selection of the Reference Model**
- **3.6.2 Disturbance Estimation**
- **3.6.3 Selection of Critical Index Value**
- **3.6.4 Index Properties**
- **3.7 Summary and Conclusions**
- **4 Advanced Control Performance Assessment**
- **4.1 Generalised Minimum-Variance Control (GMVC) Benchmarking**
- **4.1.1 GMV Control**
- **4.1.2 Selection of Weightings**
- **4.1.3 GMVC with Static Weightings**
- **4.1.4 Assessment Index and Procedure**
- **4.2 Linear-Quadratic Gaussian (LQG) Benchmarking**
- **4.2.1 Classical LQG Framework**
- **4.2.2 Polynomial Domain Approach**
- **4.2.3 LQG Framework as Special Case of MPC**
- **4.2.4 Subspace-Based LQG Design**
- **4.2.5 Generation of the LQG Performance Limit Curve**
- **4.2.6 LQG Assessment Using Routine Operating Data**
- **4.3 Model Predictive Control (MPC) Assessment**
- **4.3.1 Basic Principle and Properties**
- **4.3.2 Constrained Minimum-Variance Control**
- **4.3.3 Design-Case MPC Benchmarking**
- **4.3.4 Infinite-Horizon Model Predictive Control**
- **4.3.5 Assessing the Effect of Constraints**
- **4.3.6 Economic Performance Assessment of MPC**
- **4.4 Summary and Conclusions**
- **5 Deterministic Controller Assessment**
- **5.1 Performance Metrics**
- **5.2 Controller Assessment Based on Set-Point Response Data**
- **5.2.1 Normalised Criteria**
- **5.2.2 Assessment Methodology**
- **5.2.3 Determination of Time Delay from Step Response**
- **5.2.4 Application Examples**
- **5.3 Idle Index for Detecting Sluggish Control**
- **5.3.1 Characterisation of Sluggish Control**
- **5.3.2 Idle Index**

- **6 Closing Remarks**

- **Appendices**

- **References**

- **Index**
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3 Practical Conditions and Parameter Selection</td>
<td>134</td>
</tr>
<tr>
<td>5.3.4 Illustrative Example</td>
<td>136</td>
</tr>
<tr>
<td>5.4 Assessment of Load Disturbance Rejection Performance</td>
<td>138</td>
</tr>
<tr>
<td>5.4.1 Methodology</td>
<td>138</td>
</tr>
<tr>
<td>5.4.2 Practical Conditions</td>
<td>140</td>
</tr>
<tr>
<td>5.4.3 Illustrative Example</td>
<td>141</td>
</tr>
<tr>
<td>5.5 Comparative Simulation Studies</td>
<td>143</td>
</tr>
<tr>
<td>5.6 Summary and Conclusions</td>
<td>144</td>
</tr>
<tr>
<td>6 Minimum-Variance Assessment of Multivariable Control Systems</td>
<td>147</td>
</tr>
<tr>
<td>6.1 Interactor Matrix: Time-Delay Analogy</td>
<td>147</td>
</tr>
<tr>
<td>6.1.1 Definition and Special Forms</td>
<td>147</td>
</tr>
<tr>
<td>6.1.2 Recursive Determination of Unitary Interactor Matrices</td>
<td>149</td>
</tr>
<tr>
<td>6.1.3 Estimation from Closed-Loop Identification</td>
<td>153</td>
</tr>
<tr>
<td>6.2 Interactor-Matrix-Based Minimum-Variance Control Law</td>
<td>156</td>
</tr>
<tr>
<td>6.3 Assessment Based on the Interactor Matrix</td>
<td>157</td>
</tr>
<tr>
<td>6.4 Assessment Without Knowledge of the Interactor Matrix</td>
<td>162</td>
</tr>
<tr>
<td>6.4.1 Lower Bound of MIMO Performance Index</td>
<td>163</td>
</tr>
<tr>
<td>6.4.2 Upper Bound of MIMO Minimum Variance Benchmark</td>
<td>165</td>
</tr>
<tr>
<td>6.4.3 Recommended Procedure for the Assessment of MIMO Control Systems</td>
<td>165</td>
</tr>
<tr>
<td>6.5 Summary and Conclusions</td>
<td>169</td>
</tr>
<tr>
<td>7 Selection of Key Factors and Parameters in Assessment Algorithms</td>
<td>171</td>
</tr>
<tr>
<td>7.1 Data Pre-processing</td>
<td>171</td>
</tr>
<tr>
<td>7.1.1 Selection of Sampling Interval</td>
<td>172</td>
</tr>
<tr>
<td>7.1.2 Selection of Data Length</td>
<td>173</td>
</tr>
<tr>
<td>7.1.3 Removing of Outliers, Detrending and Pre-filtering</td>
<td>175</td>
</tr>
<tr>
<td>7.1.4 Effect of Smoothing, Compression and Quantisation</td>
<td>176</td>
</tr>
<tr>
<td>7.2 Prediction Models and Identification Methods</td>
<td>178</td>
</tr>
<tr>
<td>7.2.1 Implication of the Use of Routine Operating Data</td>
<td>178</td>
</tr>
<tr>
<td>7.2.2 Role of the Estimated Model</td>
<td>179</td>
</tr>
<tr>
<td>7.2.3 AR(X)-Type Models</td>
<td>180</td>
</tr>
<tr>
<td>7.2.4 ARI(X)-Type Models</td>
<td>182</td>
</tr>
<tr>
<td>7.2.5 Laguerre Networks</td>
<td>182</td>
</tr>
<tr>
<td>7.2.6 Model-Free (Subspace) Identification</td>
<td>185</td>
</tr>
<tr>
<td>7.2.7 Estimation of Process Models from Routine Operating Data</td>
<td>186</td>
</tr>
<tr>
<td>7.3 Selection of Model Parameters</td>
<td>195</td>
</tr>
<tr>
<td>7.3.1 Time Delay Estimation</td>
<td>196</td>
</tr>
<tr>
<td>7.3.2 Model Order Selection</td>
<td>198</td>
</tr>
<tr>
<td>7.4 Comparative Study of Different Identification Techniques</td>
<td>200</td>
</tr>
<tr>
<td>7.4.1 AR vs. ARMA Modelling</td>
<td>202</td>
</tr>
<tr>
<td>7.4.2 Subspace Identification</td>
<td>203</td>
</tr>
<tr>
<td>7.4.3 Performance of the FCOR Algorithm</td>
<td>203</td>
</tr>
<tr>
<td>7.4.4 Use of Laguerre Networks</td>
<td>204</td>
</tr>
</tbody>
</table>
Part II Detection and Diagnosis of Control Performance Problems

8 Statistical Process Control

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Univariate Statistical Process Control</td>
<td>209</td>
</tr>
<tr>
<td>8.2 Multivariate Statistical Process Control</td>
<td>212</td>
</tr>
<tr>
<td>8.2.1 Principal Component Analysis</td>
<td>212</td>
</tr>
<tr>
<td>8.2.2 Partial Least Squares</td>
<td>214</td>
</tr>
<tr>
<td>8.2.3 Advanced Methods for Multivariate Statistical Process Control</td>
<td>215</td>
</tr>
<tr>
<td>8.3 Use for Control Performance Assessment</td>
<td>216</td>
</tr>
<tr>
<td>8.4 Summary and Conclusions</td>
<td>217</td>
</tr>
</tbody>
</table>

9 Detection of Oscillating Control Loops

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Root Causes of Poor Performance</td>
<td>219</td>
</tr>
<tr>
<td>9.2 Characterisation and Sources of Oscillations in Control Loops</td>
<td>221</td>
</tr>
<tr>
<td>9.3 Detection of Peaks in the Power Spectrum</td>
<td>222</td>
</tr>
<tr>
<td>9.4 Regularity of “Large Enough” Integral of Absolute Error (IAE)</td>
<td>224</td>
</tr>
<tr>
<td>9.4.1 Load-Disturbance Detection</td>
<td>224</td>
</tr>
<tr>
<td>9.4.2 Basic Approach</td>
<td>225</td>
</tr>
<tr>
<td>9.4.3 Detection Procedure</td>
<td>226</td>
</tr>
<tr>
<td>9.4.4 Method Enhancement for Real-Time Oscillation Detection</td>
<td>226</td>
</tr>
<tr>
<td>9.5 Regularity of Upper and Lower Integral of Absolute Errors and Zero Crossings</td>
<td>228</td>
</tr>
<tr>
<td>9.5.1 Basic Methodology</td>
<td>228</td>
</tr>
<tr>
<td>9.5.2 Practical Conditions and Parameter Selection</td>
<td>229</td>
</tr>
<tr>
<td>9.6 Decay Ratio Approach of the Auto-covariance Function</td>
<td>230</td>
</tr>
<tr>
<td>9.6.1 Methodology</td>
<td>230</td>
</tr>
<tr>
<td>9.6.2 Practical Conditions and Parameter Selection</td>
<td>232</td>
</tr>
<tr>
<td>9.7 Regularity of Zero Crossings of the Auto-covariance Function</td>
<td>233</td>
</tr>
<tr>
<td>9.8 Pitfalls of Multiple Oscillations—Need for Band-Pass Filtering</td>
<td>234</td>
</tr>
<tr>
<td>9.9 Detection of Intermittent Oscillations</td>
<td>237</td>
</tr>
<tr>
<td>9.10 Summary and Conclusions</td>
<td>237</td>
</tr>
</tbody>
</table>

10 Detection of Loop Nonlinearities

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Methods Review</td>
<td>239</td>
</tr>
<tr>
<td>10.2 Bicoherence Technique</td>
<td>240</td>
</tr>
<tr>
<td>10.2.1 Non-Gaussianity Index</td>
<td>241</td>
</tr>
<tr>
<td>10.2.2 Nonlinearity Index</td>
<td>242</td>
</tr>
<tr>
<td>10.2.3 Procedure and Practical Conditions</td>
<td>243</td>
</tr>
<tr>
<td>10.2.4 Modified Indices</td>
<td>244</td>
</tr>
<tr>
<td>10.3 Surrogate Data Analysis</td>
<td>246</td>
</tr>
<tr>
<td>10.3.1 Generation of Surrogate Data</td>
<td>248</td>
</tr>
<tr>
<td>10.3.2 Discriminating Statistics—Nonlinear Predictability Index</td>
<td>250</td>
</tr>
</tbody>
</table>
10.3.3 Nonlinearity Detection Procedure

10.3.4 Spurious Nonlinearity—Pitfalls in the Surrogate Data

10.3.5 Default Parameter Values and Practical Issues

10.4 Detection of Saturated Actuators

10.4.1 Saturation Test Based on Statistical Distribution

10.4.2 Saturation Index for Valve Monitoring

10.5 Comparative Studies

10.5.1 Unit-Wide Oscillation Caused by a Sensor Fault

10.5.2 Plant-Wide Oscillation Caused by a Valve Fault

10.6 Summary and Conclusions

11 Diagnosis of Stiction-Related Actuator Problems

11.1 Typical Valve-Controlled Loop

11.2 Effects Relating to Valve Nonlinearity

11.3 Stiction Analysis

11.3.1 Effect of Stiction in Control Loops

11.3.2 Physically Based Stiction Modelling

11.3.3 Data-Driven Stiction Modelling

11.3.4 Typical Trends of Variables and Input–Output Shape Analysis

11.4 Stiction Diagnosis Based on Shape Analysis of MV–OP Plots

11.4.1 Stuck Indices

11.5 Cross-Correlation-Based Stiction Detection

11.6 Diagnosis Based on Curve Fitting

11.6.1 Sinusoidal Fitting

11.6.2 Triangular Fitting

11.6.3 Stiction Index and Detection Procedure

11.6.4 Similar Techniques

11.7 Nonlinearity Detection and PV–OP Pattern Analysis

11.7.1 Stiction Detection and Estimation Procedure

11.7.2 Practical Issues

11.8 Tests to Confirm Stiction

11.8.1 Controller Gain Change Test

11.8.2 Valve Travel or Bump Test

11.9 Stiction Diagnosis Procedure

11.10 Summary and Conclusions

12 Complete Oscillation Diagnosis Based on Hammerstein Modelling

12.1 Features of the Proposed Framework

12.2 Identification Model Structure

12.3 Identification Algorithm

12.3.1 Linear Model Estimation

12.3.2 Nonlinear Model Estimation

12.4 Key Issues

12.4.1 Model Structure Selection
Part III Performance Improvement

13 Performance Monitoring and Improvement Strategies . 333
 13.1 Performance Improvement Measures . 333
 13.2 Loop Monitoring Paradigms . 335
 13.2.1 Bottom-Up and Top-Down Approaches . 335
 13.2.2 Loop Prioritisation and Ranking . 337
 13.2.3 Relationship to Economical Benefits . 337
 13.3 Comprehensive Procedure for Performance Monitoring . 338
 13.4 Summary and Conclusions . 341

14 Controller Auto-Tuning Based on Control Performance Monitoring . 343
 14.1 Basic Concepts of Controller Auto-Tuning and Adaptation . 345
 14.2 Overview and Classification of CPM-Based Tuning Methods . 346
 14.3 Optimisation-Based Assessment and Tuning . 347
 14.3.1 Methods Based on Complete Knowledge of System Model . 347
 14.3.2 Techniques Based on Routine and Set-Point Response Data . 356
 14.4 Iterative Controller Assessment and Tuning . 362
 14.4.1 Techniques Based on Load Disturbance Changes . 362
 14.4.2 Methods Based on Routine Data and Impulse Response Assessment . 366
 14.5 Strategies for Variation of Controller Parameters . 380
 14.5.1 Variation of Proportional Gain Alone and Fine Tuning of Integral Time . 380
 14.5.2 Simultaneous Variation . 381
 14.5.3 Successive Variation . 381
 14.5.4 Constraints and Loop Stability . 382
 14.6 Comparative Studies . 383
 14.7 Summary and Conclusions . 385

Part IV Applications and Tools

15 Industrial CPM Technology and Applications . 389
 15.1 Demands on Performance Monitoring Algorithms . 389
 15.2 Review of Control Performance Monitoring Applications . 391
 15.2.1 Analysis of Fields of Application . 393
16 Performance Monitoring of Metal Processing Control Systems .. 403
 16.1 Introduction to the Metal Processing Technology ... 404
 16.1.1 Steel Processing Route and Control Objectives ... 404
 16.1.2 Control Objectives ... 406
 16.1.3 Mill Automation .. 409
 16.1.4 Overview of Metal Processing Control Systems .. 411
 16.1.5 Technological Control Systems .. 414
 16.2 Practical Aspects of Performance Assessment in Metal Processing 415
 16.2.1 Online vs. Batch-Wise Evaluation .. 415
 16.2.2 Oscillation Diagnosis .. 416
 16.2.3 Time-Based vs. Length-Based Assessment .. 417
 16.2.4 User-Specified Indices ... 418
 16.3 Industrial Cases Studies and Developed Monitoring Tools ... 418
 16.3.1 Gauge Control in Cold Tandem Mills ... 419
 16.3.2 Flatness Control in Cold Tandem Mills ... 424
 16.3.3 Temperature Control in Annealing Lines ... 427
 16.4 Summary and Conclusions .. 439

Appendix A Basic Signal Processing and Statistics ... 441
 A.1 Ergodicity .. 441
 A.2 Expectation and Variance .. 441
 A.3 Correlation and Covariance ... 442
 A.4 Discrete Fourier Transform ... 443
 A.5 Power Spectrum and Coherence Function ... 444

Appendix B Higher-Order Statistics ... 447
 B.1 Moments and Cumulants ... 447
 B.2 Polyspectra and Coherence Functions ... 449
 B.3 Estimating the Bispectrum from Data .. 451
 B.4 Skewness and Squared Bicoherence Functions .. 452

Appendix C Control Loops from Different Industries .. 457

References ... 461

Index .. 481
Control Performance Management in Industrial Automation Assessment, Diagnosis and Improvement of Control Loop Performance
Jelali, M.
2013, XXVII, 480 p., Hardcover