Contents

1 **Introduction** ... 1
 1.1 Historical Overview .. 1
 1.2 Parametric and Non-parametric Tuning 4
 1.3 Conclusions ... 7

2 **Non-parametric Tuning of PID Controllers** 9
 2.1 PID Control .. 9
 2.2 Ziegler–Nichols Closed-Loop Test and Tuning 11
 2.3 Åström–Hägglund Relay Feedback Test 14
 2.4 Generating Test Oscillations in the Third Quadrant 16
 2.5 Tests that Ensure Frequency of Oscillations at Arbitrary Process Phase Lags ... 19
 2.5.1 Test Using Additional Time Delay 19
 2.5.2 Test Using Additional Integrator Term 20
 2.5.3 Test Using Additional Derivative Term 21
 2.5.4 Test Using Phase-Lock Loop 22
 2.6 Conclusions ... 23

3 **Modified Relay Feedback Test (MRFT) and Tuning of PID Controllers** ... 25
 3.1 MRFT and Holistic Approach to Test and Tuning 25
 3.1.1 Modified Relay Feedback Test 25
 3.1.2 Homogeneous Tuning Rules 28
 3.1.3 Non-parametric Tuning Rules for Specification on Gain Margin ... 29
 3.1.4 Non-parametric Tuning Rules for Specification on Phase Margin ... 31
 3.1.5 Example .. 33
 3.2 Process-Specific Optimal Tuning Rules 33
 3.2.1 General Approach to Producing Process-Specific Optimal Tuning Rules .. 33
3.2.2 Tuning of Flow Loops 39
3.2.3 Tuning of Level Loops 53
3.2.4 Tuning of Pressure Loops 62
3.2.5 Tuning of Temperature Loops 68
3.3 Conclusions 77

4 Improving the Accuracy of Tuning of PID Controllers 81
4.1 Improving the Accuracy of Tuning Through Nonlinear Model of
Control Valve in Flow Loop 81
4.1.1 Model of Flow Process 82
4.1.2 Lyapunov Linearisation of Flow Process Dynamics 85
4.1.3 Local Probing of Incremental Nonlinear Dynamics
Through MRFT 87
4.1.4 Example of Analysis 88
4.2 Optimal Tuning Rules for Flow Loop, Based on Nonlinear Model . 91
4.3 Conclusions 92

5 Exact Model of MRFT and Parametric Tuning 97
5.1 Locus of a Perturbed Relay System (LPRS) as Frequency-Domain
Characteristic of Process 97
5.1.1 From Describing Function Analysis to LPRS Analysis 97
5.1.2 Symmetric Oscillations in Relay Feedback Systems 100
5.1.3 Asymmetric Oscillations in Relay Feedback Systems and
Propagation of External Constant Inputs 101
5.2 Introduction to the LPRS 103
5.2.1 Computation of LPRS 103
5.2.2 Computation of the LPRS from Differential Equations ... 105
5.2.3 Computation of the LPRS from Process Transfer Function . 111
5.2.4 LPRS of Low Order Dynamics 113
5.2.5 Some Properties of the LPRS 117
5.3 LPRS Model of Oscillations in MRFT 119
5.3.1 Exact Frequency-Domain Analysis of Oscillations 119
5.3.2 Describing Function Analysis of External Signal
Propagation 120
5.3.3 Exact Frequency-Domain Analysis of External Signal
Propagation 125
5.4 Exact Model of Oscillations in Two-Relay Controller 131
5.4.1 LPRS-Based Analysis 133
5.4.2 Poincaré Map-Based Analysis of Orbital Stability 137
5.5 Example of Identification 138
5.6 Conclusions 139

6 Analysis of Transient Oscillations in Systems with MRFT 141
6.1 Dynamic Harmonic Balance 141
6.1.1 Introduction 141
6.1.2 Harmonic Balance for Transient Oscillations 142
Contents

6.2 Analysis of Motions in the Vicinity of a Periodic Solution 145
6.3 Dynamic Harmonic Balance Including Frequency Rate of Change (Full Dynamic Harmonic Balance) 147
6.4 Model of Transient Oscillations in the Presence of Delay 150
6.5 Describing Function of MRFT for Sinusoidal Input of Exponentially Changing Amplitude 151
6.6 Dynamic Harmonic Balance in System with MRFT Algorithm 153
6.7 Example of Analysis of Transient Motions Through Dynamic Harmonic Balance 154
6.8 Conclusions .. 158

7 Software for Loop Tuning in Distributed Control Systems (DCS) 159
7.1 Specifics of Loop Tuning in DCS 159
7.2 Methods of Mitigating Effects Existing in Real Processes 161
 7.2.1 Invasive Character of Tuning 161
 7.2.2 Mitigation of Noise Effects 162
 7.2.3 Mitigation of Effect of External Disturbances 165
 7.2.4 Accounting for Process Nonlinearities 166
7.3 DCS Loop Tuning Software Description 166
7.4 Conclusions .. 169

8 Appendix ... 171
8.1 Sample Simulink Models Used in Optimisation 171
8.2 Matlab Code Used in Book .. 172
 8.2.1 ISE Optimisation of Tuning Rules for PI Flow Controller (Response to Set Point) 172
 8.2.2 Library of Functions for LPRS Computing 175

References ... 181
Index .. 185
Non-parametric Tuning of PID Controllers
A Modified Relay-Feedback-Test Approach
Boiko, I.
2013, XX, 188 p. With online files/update., Hardcover
ISBN: 978-1-4471-4464-9