Physically based modeling is widely used within the computer graphics and mechanical engineering industries as a way of achieving realistic animations and accurate simulations of complex systems. Such complex systems are usually hard to animate using scripts, and difficult to analyze using conventional mechanics theory, which makes them perfect candidates for physically based modeling and simulation techniques.

The field of physically based modeling is broad. It includes everything from modeling a ball rolling on the floor, to a car engine working, to clothing a virtual character. The theory varies from precise mathematical methods to purpose-specific approximated solutions that are mathematically incorrect, but produce realistic animations for the particular situation being considered. Depending on the case, an approximated solution might serve the purpose, however, there are times when approximations are not admissible, and the use of accurate simulation engines is a requirement. Developing and implementing physically based dynamic-simulation engines that are robust is difficult. The main reason is that it requires a breadth of knowledge in a diverse set of subjects, each of them standing alone as a broad and complex topic.

Instead of attempting to address all types of simulation engines available in the broad area of physically based modeling, this book provides in-depth coverage of the most common simulation engines. These simulation engines restrict the general case of physically based modeling to the particular case wherein the objects interacting are either particles or rigid bodies.

This book is a comprehensive introduction to the techniques needed to produce realistic simulations and animations of particle and rigid-body systems. It focuses on both the theoretical and practical aspects of developing and implementing physically based dynamic-simulation engines that can be used to generate convincing animations of physical events involving particles and rigid bodies, such as the demolition of a bridge or building with debris falling all over. It can also be used to produce accurate simulations of mechanical systems, such as a robotic parts feeder where parts are dropped on a conveyor belt and then positioned and aligned as they hit fences strategically placed on the conveyor and used to align the parts at a specific orientation.

Guide to Dynamic Simulations of Rigid Bodies and Particle Systems was written for computer graphics, computer animation, computer-aided mechanical design and
modeling software developers who want to learn to incorporate physically based dynamic-simulation features into their own systems. The goal of this book is to make the principles and methods of physically based modeling of particle and rigid-body systems accessible to a broader audience of software developers who are familiar with mainstream computer-graphics techniques, and the associated mathematics.

The book is organized into three main topics: particle systems, rigid-body systems, and articulated rigid-body systems. The first chapter is an overview of how all techniques covered in this book fit together as independent modules constituting a simulation engine. The following chapters and appendices go into more detailed explanations for each technique. The techniques developed can be used to create simulation engines capable of combining particles, rigid bodies and articulated rigid bodies into a single system. Each chapter presents many algorithms and covers them in considerable depth, yet makes their design and analysis accessible to all levels of readers. We have tried to keep explanations elementary without sacrificing depth or mathematical rigor.

The most complex mathematical algorithms are described in detail in the appendices. Our goal here is to focus the reader’s attention to the details of the topic being covered, and not be distracted by mathematical issues that can be viewed as “black box” modules having specific functionality (such as a numerical integrator or a rigid-body-mass-properties computation module). Readers should be able to develop their own software implementation of a simulation engine using the techniques covered in-depth in this book, or shorten their software development effort by taking advantage of the several resources available on the Web.

Acknowledgments

I wish to thank my wife, Izabella, and my children Leticia and Nicholas for all their support, encouragement and love.

Los Angeles, CA, USA

Murilo G. Coutinho
Guide to Dynamic Simulations of Rigid Bodies and Particle Systems
Coutinho, M.G.
2013, XIV, 402 p., Hardcover
ISBN: 978-1-4471-4416-8