Contents

1 Multiple Attribute Decision Making in the Manufacturing Environment .. 1
 1.1 Importance of Multiple Attribute Decision Making in the Manufacturing Environment 1
 1.2 Some Important Decision Making Situations of the Manufacturing Environment 2
 1.3 Multiple Attribute Decision Making Methods ... 3
 1.4 Overview of the Book .. 5
 References .. 5

2 Improved Multiple Attribute Decision Making Methods 7
 2.1 Improved Analytic Hierarchy Process Method 7
 2.1.1 Formulating the Decision Table 8
 2.1.2 Deciding Weights of the Attributes 8
 2.1.3 Calculating Composite Performance Scores 10
 2.2 Improved Technique for Order Preference by Similarity to Ideal Solution Method 10
 2.2.1 Formulating the Decision Table 10
 2.2.2 Deciding Weights of the Attributes 11
 2.2.3 Calculating Composite Performance Scores 11
 2.3 Data Envelopment Analysis Method 12
 2.3.1 The Basic CCR Model 14
 2.3.2 Strengths and Limitations of Basic CCR Model 15
 2.3.3 Reduced CCR Model 16
 2.3.4 Improved RCCR/Assurance Region Model 16
 2.4 Improved Preference Ranking Organization Method for Enrichment Evaluations 17
 2.4.1 Formulation of Decision Table 18
 2.4.2 Deciding Weights of the Attributes 18
 2.4.3 Improved PROMETHEE Calculations 18
2.5 Improved ELimination Et Choix Traduisant la REalité Method ... 21
 2.5.1 Construction of the Decision Table 22
 2.5.2 Calculating the Weights of the Attributes
 Using AHP ... 22
 2.5.3 Calculations Using ELECTRE for Final Ranking 22
2.6 Improved COmplex PRoportional ASsessment Method 24
 2.6.1 Construction of the Decision Table 25
 2.6.2 Calculating the Weights of the Attributes
 Using AHP ... 25
 2.6.3 COPRAS Calculations for Final Ranking 25
2.7 Improved Gray Relational Analysis Method 27
2.8 Improved Utility Additive Method .. 30
2.9 VIKOR Method ... 33
2.10 Improved Ordered Weighted Averaging Method 35
References .. 38

3 Applications of Improved MADM Methods to the Decision Making
Problems of Manufacturing Environment .. 41
 3.1 Applications of the DEA RCCR/AR Method 41
 3.1.1 Material Selection for a Given Engineering Application 41
 3.1.2 Metal Stamping Layout Selection 46
 3.1.3 Modern Machining Method Selection 49
 3.1.4 Product End-of-Life Scenario Selection 50
 3.2 Applications of the Improved PROMETHEE Method 52
 3.2.1 Environment Friendly Cutting Fluid Selection
 for a Given Machining Application 52
 3.2.2 Evaluation of Environmentally Conscious Manufacturing Programs .. 57
 3.2.3 Product End-of-Life Scenario Selection 60
 3.2.4 Rapid Prototyping System Selection 62
 3.2.5 Gear Material Selection ... 64
 3.2.6 Flexible Manufacturing System Selection 66
 3.2.7 Material Handling Equipment Selection 67
 3.3 Applications of the Improved ELECTRE Method 69
 3.3.1 Machine Tool Selection ... 69
 3.3.2 Facility Location Selection .. 73
 3.4 Applications of the Improved COPRAS Method 74
 3.4.1 Material Selection for Given Engineering Application 74
 3.4.2 Rapid Prototyping System Selection 76
3.5 Applications of the Improved AHP Method
3.5.1 Environmentally Conscious Manufacturing Program Selection
3.5.2 Selection of Electroplating System
3.6 Applications of the Improved GRA Method
3.6.1 Material Selection for a Given Engineering Application
3.6.2 Rapid Prototyping Process Selection
3.6.3 Plant Layout Design Selection
3.6.4 Product Design Selection of a Power Electronic Device
3.7 Applications of the Improved UTA Method
3.7.1 Machine Group Selection in a Flexible Manufacturing Cell
3.7.2 Vendor Selection
3.8 Applications of the Improved VIKOR Method
3.8.1 Plant Layout Design Selection
3.8.2 Rapid Prototyping System Selection
3.9 Applications of Improved OWA Method
3.9.1 Machine Group Selection in a Flexible Manufacturing Cell
3.9.2 Vendor Selection

References

4 A Novel Subjective and Objective Integrated Multiple Attribute Decision Making Method
4.1 Proposed Novel Multiple Attribute Decision Making Methodology
4.1.1 Preparation of the Decision Table
4.1.2 Determination of Weights of Importance of the Attributes
4.1.3 Computation of Preference Index
4.1.4 Final Selection
4.2 Application of the Novel Subjective and Objective Integrated Method to the Problems of Manufacturing Environment
4.2.1 Material Selection for a High Speed Naval Craft
4.2.2 Material Selection of a Flywheel
4.2.3 Material Selection of a Cryogenic Storage Tank
4.2.4 Industrial Robot Selection
4.2.5 Environment Friendly Cutting Fluid Selection for Given Machining Application
4.2.6 Flexible Manufacturing System Selection
4.3 Discussion
References
5 A Novel Weighted Euclidean Distance-Based Approach 159
 5.1 Weighted Euclidean Distance Approach 159
 5.2 Applications of Proposed WEDBA Method for Decision Making in the Manufacturing Environment 164
 5.2.1 Material Selection of a Flywheel 164
 5.2.2 Robot Selection for a Given Industrial Application 167
 5.2.3 Flexible Manufacturing System Selection 172
 5.2.4 Optimum Parameters Selection of Green Electric Discharge Machining 183
 5.2.5 Selection of Best Product End-of-Life Scenario 187
References 189

6 A Combinatorial Mathematics-Based Decision Making Method 193
 6.1 Combinatorial Mathematics-Based Approach (CMBA) 193
 6.2 Applications of CMBA to the Decision-Making Problems 195
 6.2.1 Selection of Electroplating System 195
 6.2.2 Robot Selection 196
 6.2.3 Welding Process Selection 199
References 202

7 Comparison of Different MADM Methods for Different Decision Making Situations of the Manufacturing Environment 205
 7.1 Evaluation of Environmentally Conscious Manufacturing Programs 205
 7.2 Rapid Prototyping System Selection 207
 7.3 Gear Material Selection 208
 7.4 Flexible Manufacturing System Selection 209
 7.5 Vendor Selection: An Industrial Case Study 210
 7.6 Plant Layout Design Selection 213
 7.6.1 Application of Improved AHP Method 214
 7.6.2 Application of Improved GRA Method 215
 7.6.3 Application of Improved UTA Method 215
 7.6.4 Application of Improved OWA Method 217
 7.6.5 Application of Improved VIKOR Method 217
 7.6.6 Application of Improved WEDBA Method 218
 7.7 Application of CMBA Method 218
 7.8 Warehouse Selection 220
 7.8.1 Application of Improved AHP Method 224
 7.8.2 Application of Improved GRA Method 225
 7.8.3 Application of improved UTA Method 225
 7.8.4 Application of Improved OWA Method 227
 7.8.5 Application of Improved VIKOR Method 229
 7.8.6 Application of WEDBA Method 230
 7.8.7 Application of CMBA Method 230
Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods
Volume 2
Rao, R.V.
2013, XIV, 294 p., Hardcover
ISBN: 978-1-4471-4374-1