Contents

1 **Ankylosing Spondylitis as a Scientific Problem** 1
 1.1 Ankylosing Spondylitis: An Introduction 1
 1.2 Clinical Features of Ankylosing Spondylitis 1
 1.3 Radiological Features of Ankylosing Spondylitis 2
 1.4 The Disability of Ankylosing Spondylitis 3
 1.5 The Social and Financial Costs of Ankylosing Spondylitis 3
 1.6 Molecular Mimicry and Rheumatic Fever 4
 1.7 The Properties of the Ankylosing Spondylitis Problem 4
 1.8 King’s College Immunology Unit 5
References ... 6

2 **History of the Origin of Ankylosing Spondylitis** 7
 2.1 Introduction ... 7
 2.2 Ankylosing Spondylitis and the Egyptian Pharaohs 7
 2.3 Ankylosing Spondylitis in the Middle Ages 8
 2.4 Ankylosing Spondylitis and Realdo de Colombo 8
 2.5 Connor’s Observations in France 8
 2.6 The Eighteenth Century in Europe 10
 2.7 The Nineteenth Century in London 10
 2.8 Bechterew in St. Petersburg ... 10
 2.9 Strümpell in Erlangen and Berlin 11
 2.10 Pierre Marie and Léry in France 11
 2.11 Buckley’s Observations in the 1930s 11
 2.12 The Heart and Ankylosing Spondylitis 12
 2.13 Diagnostic Help from Physics 12
 2.14 Conclusion ... 12
References ... 12
3 The Discovery of HLA-B27 in Ankylosing Spondylitis and Related Disorders .. 15
3.1 The Tissue Typing Unit at the Westminster Hospital 15
3.2 HLA-B27 in Ankylosing Spondylitis 15
3.3 Acute Anterior Uveitis and HLA-B27 16
3.4 HLA-B27 in Reiter’s Disease and Reactive Arthritis 16
3.5 HLA-B27 as the Predisposing Gene 17
3.6 Geography of HLA-B27 .. 17
3.7 General Discussion and Conclusions 18
3.8 The Middlesex Hospital in London 18
3.9 The ‘Ankylosing Spondylitis Research Clinic of the Middlesex Hospital’ .. 19
References .. 20

4 Molecular Mimicry Between HLA-B27 and Klebsiella Bacteria Investigated by Using Rabbit Antisera ... 23
4.1 Introduction: The Problem of HLA-B27 in Ankylosing Spondylitis 23
4.2 Rabbit Immunisations ... 23
4.3 Immunodiffusion Experiments ... 24
4.4 Haemagglutination Method ... 25
4.5 Bacterial Agglutination .. 25
4.6 Radio-Binding Assay with Klebsiella Sonicate Preparation (KSP) 26
4.7 Lymphocytotoxicity Assay ... 26
4.8 Results of Immunodiffusion Experiments 27
4.9 Haemagglutination Results ... 28
4.10 Bacterial Agglutination Results 29
4.11 Results of Radio-Binding Assay with Klebsiella Sonicate Preparation (KSP) 29
4.12 Cytotoxicity Results ... 30
4.13 Discussion and Conclusions ... 31
References .. 32

5 Molecular Mimicry Between HLA-B27 and Klebsiella Bacteria Investigated by Using Human Tissue Typing Sera 35
5.1 Introduction: Molecular Mimicry and Tissue Typing Sera 35
5.2 Bristol ... 36
5.3 HLA Tissue Typing Sera ... 36
5.4 Haemagglutination Method .. 36
5.5 Labelling of Klebsiella Sonicate Preparation (KSP) 36
5.6 Radio-Binding Assay for 125I-Klebsiella Sonicate Preparation ... 37
5.7 Competition Assay for 125I-Klebsiella Sonicate Preparation 37
5.8 Results of Haemagglutination Studies with HLA Typing Sera 38
5.9 Results of Radio-Binding Assay for 125I-Klebsiella Sonicate Preparation by HLA Typing Sera 38
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Results of Competition Binding Assays</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Discussion and Conclusions</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>References</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>Muscle Changes in Ankylosing Spondylitis</td>
<td>45</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction: Involvement of Muscle Pathology in Ankylosing Spondylitis</td>
<td>45</td>
</tr>
<tr>
<td>6.2</td>
<td>Muscle Stiffness, Muscle Pain and the Enthesis</td>
<td>45</td>
</tr>
<tr>
<td>6.3</td>
<td>Patients and Controls</td>
<td>46</td>
</tr>
<tr>
<td>6.4</td>
<td>Blood Samples, Muscle Biopsies and Histology</td>
<td>46</td>
</tr>
<tr>
<td>6.5</td>
<td>Muscle Strength and Electromyographic Studies</td>
<td>47</td>
</tr>
<tr>
<td>6.6</td>
<td>Results of Histological and Biochemical Investigations</td>
<td>47</td>
</tr>
<tr>
<td>6.7</td>
<td>Muscle Strength Measurements and Surface Electromyography</td>
<td>48</td>
</tr>
<tr>
<td>6.8</td>
<td>Pathological and Clinical Implications</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>References</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>Raised Serum IgA Is Present in Ankylosing Spondylitis Patients</td>
<td>51</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction: Immunoglobulin Levels and Disease Activity in Ankylosing Spondylitis</td>
<td>51</td>
</tr>
<tr>
<td>7.2</td>
<td>Ankylosing Spondylitis Patients and Controls</td>
<td>52</td>
</tr>
<tr>
<td>7.3</td>
<td>Methods Used in Estimating Serum Immunoglobulins</td>
<td>52</td>
</tr>
<tr>
<td>7.4</td>
<td>Results of Serum IgA Estimations</td>
<td>52</td>
</tr>
<tr>
<td>7.5</td>
<td>Results of Serum IgG Estimations</td>
<td>53</td>
</tr>
<tr>
<td>7.6</td>
<td>Results of Serum IgM Estimations</td>
<td>56</td>
</tr>
<tr>
<td>7.7</td>
<td>Discussion</td>
<td>57</td>
</tr>
<tr>
<td>7.8</td>
<td>Pathological and Clinical Implications</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>References</td>
<td>58</td>
</tr>
<tr>
<td>8</td>
<td>Faecal Cultures in Ankylosing Spondylitis and Uveitis</td>
<td>61</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction: The Origin of Ankylosing Spondylitis</td>
<td>61</td>
</tr>
<tr>
<td>8.2</td>
<td>Ankylosing Spondylitis Patients and Controls</td>
<td>62</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Active Disease</td>
<td>62</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Probably Active Disease</td>
<td>63</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Inactive Disease</td>
<td>63</td>
</tr>
<tr>
<td>8.3</td>
<td>Collection and Investigations of Urinary and Faecal Specimens</td>
<td>63</td>
</tr>
<tr>
<td>8.4</td>
<td>Results of Urine Investigations</td>
<td>64</td>
</tr>
<tr>
<td>8.5</td>
<td>Results of Faecal Investigations</td>
<td>64</td>
</tr>
<tr>
<td>8.6</td>
<td>Acute Anterior Uveitis and Faecal Cultures</td>
<td>65</td>
</tr>
<tr>
<td>8.7</td>
<td>Results of Faecal Cultures in Patients with Uveitis</td>
<td>66</td>
</tr>
<tr>
<td>8.8</td>
<td>Discussion</td>
<td>66</td>
</tr>
<tr>
<td>8.9</td>
<td>Pathological and Clinical Implications</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>67</td>
</tr>
</tbody>
</table>
9 Biochemical Parameters and *Klebsiella* in Ankylosing Spondylitis 69
 9.1 Introduction: The Use of Biochemical Parameters in Ankylosing Spondylitis 69
 9.2 Selection of Ankylosing Spondylitis Patients and Controls 70
 9.3 Assessment of Disease Activity .. 70
 9.3.1 Active Disease .. 70
 9.3.2 Probably Active Disease .. 71
 9.3.3 Inactive Disease .. 71
 9.4 Methods Used in These Studies ... 71
 9.4.1 C-Reactive Protein Estimation 71
 9.4.2 Erythrocyte Sedimentation Rate Measurement 71
 9.4.3 Faecal Cultures .. 72
 9.5 C-Reactive Protein and Disease Activity 72
 9.6 Erythrocyte Sedimentation Rate and Disease Activity 73
 9.7 Isolation of *Klebsiella* and Disease Activity 73
 9.8 C-Reactive Protein and Erythrocyte Sedimentation Rate in Ankylosing Spondylitis Patients with and Without *Klebsiella* ... 74
 9.9 Discussion .. 75
 9.10 Pathological and Clinical Implications 77
References ... 77

10 Binding of *Klebsiella* Antisera to HLA-B27 Cells 79
 10.1 Introduction: The Problem of HLA-B27 in Ankylosing and Its Link to *Klebsiella* 79
 10.2 Patients and Control Subjects 80
 10.3 Rabbit Antisera .. 80
 10.4 Specificity Tests on Antisera 81
 10.5 Enzyme Immunoassay to Investigate the Binding of Anti-*Klebsiella* Sonicate Preparation to HLA-B27 Lymphocytes 82
 10.6 Absorption Experiments ... 83
 10.7 Results of Antisera Specificity 84
 10.8 Results of Enzyme Immunoassay and Absorption Experiments .. 85
 10.9 Pathological and Clinical Implications 86
References ... 88

11 IgA Antibodies to *Klebsiella* and Other Gram-Negative Bacteria in Ankylosing Spondylitis 91
 11.1 Introduction: The Problem of Elevated Serum IgA in Ankylosing Spondylitis and Its Link to *Klebsiella* 91
 11.2 Selection of Serum Samples from Ankylosing Spondylitis Rheumatoid Arthritis, Psoriasis Patients and Healthy Controls ... 92
 11.3 Enzyme-Linked Immunosorbent Assay (ELISA) 92
 11.4 Absorption Studies .. 93
 11.5 C-Reactive Protein Results ... 93
11.6 Total Serum IgA Values .. 94
11.7 IgA Antibodies to Klebsiella 94
11.8 Faecal Cultures and Anti-Klebsiella Antibodies 97
11.9 Second Study Against the Gram-Negative Microorganisms: Klebsiella, Salmonella, Yersinia and Pseudomonas. 97
11.9.1 Serum C-Reactive Protein Level 99
11.9.2 Serum IgA .. 99
11.9.3 Serum IgG .. 99
11.9.4 Serum IgM ... 100
11.9.5 ELISA IgA Antibodies .. 100
11.9.6 ELISA IgG Antibodies .. 101
11.9.7 ELISA IgM Antibodies .. 102
11.10 Pathological and Clinical Implications 102
References .. 103

12 IgA Antibodies to Klebsiella Measured by Immunoblotting . 105
12.1 Introduction: The Problem of Elevated Serum IgA in Ankylosing Spondylitis and Its Link to Klebsiella 105
12.2 Selection of Serum Samples from Ankylosing Spondylitis, Rheumatoid Arthritis Patients and Healthy Controls 106
12.3 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). 106
12.3.1 Immunoblot Analysis ... 107
12.4 Characteristics of the Four Study Groups 107
12.5 Analysis of the Results of the Immunoblotting Assay 108
12.6 Comparison of Serum and Synovial Fluids 109
12.7 Pathological and Clinical Implications 109
References .. 111

13 Antibodies to Klebsiella in Ankylosing Spondylitis Measured by Bacterial Agglutination and ELISA Against Lipopolysaccharides ... 113
13.1 Introduction: Gram-Negative Bacteria in Ankylosing Spondylitis 113
13.2 First Study: Patients and Controls 114
13.2.1 Sera from Ankylosing Spondylitis Patients 114
13.2.2 Sera from Rheumatoid Arthritis Patients 114
13.3 Statistical Analysis of Patient Groups and Controls 114
13.4 Coombs Agglutination Assay 115
13.5 Results of Coombs Agglutination Assay 116
13.6 Second Study: Patients and Controls 118
13.7 ELISA of Bacterial Lipopolysaccharide Samples 118
13.8 Results of Study on Bacterial Lipopolysaccharides 119
13.9 Clinical Implications and Discussion 119
References .. 122
14 Dutch and German Patients with Ankylosing Spondylitis Have Antibodies to Klebsiella

14.1 The Netherlands Connection: An Introduction
14.2 Amsterdam: Location and History
14.3 Patients and Controls
14.4 Serum C-Reactive Protein Levels
14.5 Indirect Immunofluorescence Studies with Klebsiella in Ankylosing Spondylitis and Acute Anterior Uveitis Patients and Proteus in Rheumatoid Patients from the Netherlands
14.5.1 IgA Antibodies to Klebsiella pneumoniae
14.5.2 IgG Antibodies to Proteus mirabilis
14.6 German Studies on Klebsiella in Ankylosing Spondylitis
14.6.1 Lübeck
14.6.2 Kiel
14.7 ELISA Studies on German Patients
14.8 Clinical Implications and Conclusions
14.9 Conclusions
References

15 Spanish, Finnish and Swedish Patients with Ankylosing Spondylitis Have Antibodies to Klebsiella

15.1 The Spanish Connection: An Introduction
15.2 Barcelona: Location and History
15.3 Catalan Patients and Controls
15.4 Statistical Analysis
15.5 Results on Catalan Patients
15.6 Turku: The Finland Connection
15.7 Results of Finnish Patients
15.8 Uppsala and the Swedish Connection
15.9 Swedish Studies
15.10 General Discussion and Conclusions
References

16 Molecular Mimicry Between Klebsiella Pullulanase Enzyme, HLA-B27 and Collagens I and IV

16.1 Introduction: The Association of HLA-B27 with Ankylosing Spondylitis Is the Central Research Issue in This Disease
16.2 Computer Search for Other Klebsiella Proteins Cross-Reacting with HLA-B27
16.3 Peptide ELISA Studies in Ankylosing Spondylitis Patients
16.3.1 B*2705 Results
16.3.2 pulD Peptide Results
16.3.3 Scrambled Control Peptide Results
16.4 Pullulan and Pullulanase
16.5 ELISA Studies on Effect of Antibody in Bacteria Grown in Presence or Absence of Pullulan 148
 16.5.1 Results of ELISA Studies in Ankylosing Spondylitis Patients ... 149
 16.5.2 Results of ELISA Studies in Rheumatoid Arthritis Patients .. 149
16.6 Serum Antibodies to the Pullulanase (pulA) Enzyme 149
16.7 ELISA Studies on Collagen Types I and IV 151
16.8 Discussion and Conclusions ... 153
References .. 157

17 Antibodies to Klebsiella and HLA-B27 Peptides in Ankylosing Spondylitis Patients from Southern Japan 159
 17.1 The Japanese Connection: An Introduction 159
 17.2 Otsu: Location and History ... 160
 17.3 Patients and Controls ... 160
 17.4 Results of ELISA Studies on Bacteria 161
 17.5 Results of ELISA Studies on HLA-B27 and Pullulanase Peptide Sequences .. 163
 17.5.1 Antibodies to the HLA-B27 Sequence 164
 17.5.2 Antibodies to the Pullulanase-D Peptide 165
 17.5.3 Antibodies to Scrambled pulD Control Peptide 167
 17.6 Discussion and Conclusions ... 167
References .. 169

18 Ankylosing Spondylitis Sera Are Cytotoxic to Cells Bearing HLA-B27 Sequences .. 171
 18.1 Introduction: The Association of HLA-B27 with the Klebsiella Nitrogenase and Klebsiella Pullulanase Enzymes 171
 18.2 Antibodies to Klebsiella Nitrogenase Reductase in Patients with Ankylosing Spondylitis 172
 18.3 Sera from Ankylosing Spondylitis and Rheumatoid Arthritis Patients .. 173
 18.4 Synthetic Peptides and ELISA .. 174
 18.5 Antibodies to Peptide Antigens in Ankylosing Spondylitis Patients .. 175
 18.5.1 Antibodies to the HLA-B27 Peptide 175
 18.5.2 Antibodies to the Klebsiella pneumoniae Nitrogenase Peptide ... 175
 18.5.3 Antibodies to the Klebsiella pneumoniae Pullulanase Peptide .. 175
 18.6 Antibodies to Peptide Antigens in Rheumatoid Arthritis Patients ... 176
 18.6.1 HLA-DRB1*0404 Peptide ... 176
18.6.2 *Proteus mirabilis* Haemolysin Peptide 176
18.6.3 Type XI Collagen Peptide 176

18.7 Preparation of Sheep Red Blood Cells for Cytotoxicity Assay ... 177

18.8 Cytotoxicity Studies in Ankylosing Spondylitis Patients 178

18.9 Cytotoxicity Studies in Rheumatoid Arthritis Patients 179
18.9.1 EQRRAA Peptide .. 179
18.9.2 LRREI Peptide .. 180
18.9.3 EDERAA Peptide .. 181

18.10 Discussion and Conclusions .. 181

References .. 184

19 Pathogenesis of Ankylosing Spondylitis and *Klebsiella* Substrates ... 187
19.1 Introduction: The Association of Serum IgA in Ankylosing Spondylitis Points to a Bowel Microbe 187
19.2 Marseille: Location and History 190
19.3 Lymphangiographic Studies .. 190
19.4 The Proposed Model for the Pathogenesis of Ankylosing Spondylitis .. 191
19.5 Importance for Early Diagnosis of Ankylosing Spondylitis 194
19.6 The Concept of ‘Gram-Negative Reactive Arthritis’ and HLA-B27 ... 194
19.6.1 Paronen’s Study ... 194
19.6.2 The ‘USS Little Rock’ Epidemic 195
19.6.3 *Salmonella* Reactive Arthritis in Finland 195
19.6.4 *Yersinia* Reactive Arthritis 195
19.7 Starch as the Source of the Main Bacterial Substrate in the Gut 196
19.7.1 A Patient Provides an Important Clue 196
19.7.2 Fecal Flora in Vegetarian Seventh Day Adventists 196
19.7.3 Carbohydrates as Bacterial Substrates 197
19.7.4 Ileostomy Studies ... 197
19.7.5 Oral Hydrogen Excretion Studies 197
19.8 Composition of the ‘Low Starch Diet’ 200
19.9 Discussion and Conclusions ... 200

References .. 202

20 Ankylosing Spondylitis and the ‘Low-Starch Diet’ 203
20.1 Introduction: The Therapeutic Imperative 203
20.2 Current Therapeutic Interventions 203
20.2.1 Physiotherapy and Exercise 203
20.2.2 Sulphasalazine .. 204
20.2.3 Sulphasalazine and *Klebsiella* 204
20.2.4 Moxifloxacin in Ankylosing Spondylitis 204
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.3 ‘Low-Starch Diet’ in Controls</td>
<td>205</td>
</tr>
<tr>
<td>20.3.1 Open Study with 21 Healthy Controls</td>
<td>205</td>
</tr>
<tr>
<td>20.3.2 Nutritionally Controlled Study with 11 Healthy Subjects</td>
<td>205</td>
</tr>
<tr>
<td>20.4 The ‘Low-Starch Diet’ in Ankylosing Spondylitis Patients</td>
<td>207</td>
</tr>
<tr>
<td>20.4.1 How Not to Do ‘Coded Runs’ Involving Diet Modification</td>
<td>207</td>
</tr>
<tr>
<td>20.4.2 Ankylosing Spondylitis Patients Partaking in the Diet Study</td>
<td>209</td>
</tr>
<tr>
<td>20.4.3 Erythrocyte Sedimentation Rate and Haemoglobin Correlation</td>
<td>209</td>
</tr>
<tr>
<td>20.4.4 C-Reactive Protein and Haemoglobin Correlation</td>
<td>209</td>
</tr>
<tr>
<td>20.5 ‘Low-Starch Diet’ and Levels of Inflammation in Ankylosing Spondylitis Patients on the Diet</td>
<td>211</td>
</tr>
<tr>
<td>20.6 Discussion and Conclusions</td>
<td>211</td>
</tr>
<tr>
<td>20.7 A Patient Followed for 28 years. (Mrs. Beard’s Story)</td>
<td>215</td>
</tr>
<tr>
<td>20.8 A Sceptic Tries the ‘Low-Starch Diet’ (George’s Story)</td>
<td>217</td>
</tr>
<tr>
<td>20.9 Carol Sinclair and Her Book The IBS Low-Starch Diet</td>
<td>218</td>
</tr>
<tr>
<td>References</td>
<td>219</td>
</tr>
<tr>
<td>21 The Problem of Crohn’s Disease and Klebsiella</td>
<td>221</td>
</tr>
<tr>
<td>21.1 Introduction: Crohn’s Disease</td>
<td>221</td>
</tr>
<tr>
<td>21.2 Ghent: Location and History</td>
<td>221</td>
</tr>
<tr>
<td>21.3 The Link Between Ankylosing Spondylitis and Crohn’s Disease</td>
<td>222</td>
</tr>
<tr>
<td>21.4 Birmingham: Location and History</td>
<td>222</td>
</tr>
<tr>
<td>21.5 Antibodies to Yersinia and Klebsiella but Not Pseudomonas in Crohn’s Disease Patients</td>
<td>223</td>
</tr>
<tr>
<td>21.6 IBD Patients from the Royal Free Hospital in London Have Antibodies to Klebsiella</td>
<td>223</td>
</tr>
<tr>
<td>21.7 Coeliac Disease Patients from St. Thomas’ Hospital Do Not Have Antibodies Against Klebsiella</td>
<td>224</td>
</tr>
<tr>
<td>21.8 Antibodies to Klebsiella in Crohn’s Disease and in Ankylosing Spondylitis Patients from Scotland</td>
<td>229</td>
</tr>
<tr>
<td>21.8.1 Glasgow</td>
<td>230</td>
</tr>
<tr>
<td>21.8.2 Edinburgh</td>
<td>230</td>
</tr>
<tr>
<td>21.9 Immune Response to Collagens in Patients with Crohn’s Disease and Ankylosing Spondylitis</td>
<td>231</td>
</tr>
<tr>
<td>21.10 Conclusion: Crohn’s Disease Is Caused by Klebsiella in HLA-B27 Negative Individuals</td>
<td>233</td>
</tr>
<tr>
<td>References</td>
<td>234</td>
</tr>
<tr>
<td>22 Ankylosing Spondylitis and ‘Popper Sequences’</td>
<td>235</td>
</tr>
<tr>
<td>22.1 Introduction to ‘Popper Sequences’</td>
<td>235</td>
</tr>
<tr>
<td>22.2 Components of a ‘Popper Sequence’</td>
<td>236</td>
</tr>
</tbody>
</table>
22.3 First Popper Sequence ... 236
22.4 Second Popper Sequence .. 237
22.5 Third Popper Sequence ... 238
22.6 Fourth Popper Sequence ... 239
22.7 Fifth Popper Sequence .. 240
22.8 Sixth Popper Sequence .. 241
22.9 Seventh Popper Sequence 242
22.10 Eighth Popper Sequence ... 243
22.11 Ninth Popper Sequence ... 244
22.12 Tenth Popper Sequence ... 245
22.13 Eleventh Popper Sequence 246
22.14 Twelfth Popper Sequence 247
22.15 Thirteenth Popper Sequence 248
22.16 Therapeutic Implications 249
References ... 249

Index ... 251
Ankylosing spondylitis and Klebsiella
Ebringer, A.
2013, XX, 256 p. 89 illus., 86 illus. in color., Hardcover
ISBN: 978-1-4471-4299-7