## Contents

1 Ankylosing Spondylitis as a Scientific Problem .......................... 1
1.1 Ankylosing Spondylitis: An Introduction .............................. 1
1.2 Clinical Features of Ankylosing Spondylitis .......................... 1
1.3 Radiological Features of Ankylosing Spondylitis ...................... 2
1.4 The Disability of Ankylosing Spondylitis .............................. 3
1.5 The Social and Financial Costs of Ankylosing Spondylitis ......... 3
1.6 Molecular Mimicry and Rheumatic Fever ............................... 4
1.7 The Properties of the Ankylosing Spondylitis Problem ............. 4
1.8 King’s College Immunology Unit ........................................ 5
References ............................................................................. 6

2 History of the Origin of Ankylosing Spondylitis ......................... 7
2.1 Introduction ........................................................................ 7
2.2 Ankylosing Spondylitis and the Egyptian Pharaohs ................ 7
2.3 Ankylosing Spondylitis in the Middle Ages ............................ 8
2.4 Ankylosing Spondylitis and Realdo de Colombo ..................... 8
2.5 Connor’s Observations in France ......................................... 8
2.6 The Eighteenth Century in Europe ....................................... 10
2.7 The Nineteenth Century in London ...................................... 10
2.8 Bechterew in St. Petersburg ............................................... 10
2.9 Strümpell in Erlangen and Berlin ....................................... 11
2.10 Pierre Marie and Léri in France .......................................... 11
2.11 Buckley’s Observations in the 1930s .................................. 11
2.12 The Heart and Ankylosing Spondylitis ............................... 12
2.13 Diagnostic Help from Physics ........................................... 12
2.14 Conclusion ........................................................................ 12
References ............................................................................. 12
3 The Discovery of HLA-B27 in Ankylosing Spondylitis and Related Disorders ................................................. 15
  3.1 The Tissue Typing Unit at the Westminster Hospital .................. 15
  3.2 HLA-B27 in Ankylosing Spondylitis ..................................... 15
  3.3 Acute Anterior Uveitis and HLA-B27 ...................................... 16
  3.4 HLA-B27 in Reiter’s Disease and Reactive Arthritis .................. 16
  3.5 HLA-B27 as the Predisposing Gene ...................................... 17
  3.6 Geography of HLA-B27 .................................................. 17
  3.7 General Discussion and Conclusions ...................................... 18
  3.8 The Middlesex Hospital in London ...................................... 18
  3.9 The ‘Ankylosing Spondylitis Research Clinic of the Middlesex Hospital’ .................................................. 19
References ........................................................................... 20

4 Molecular Mimicry Between HLA-B27 and Klebsiella Bacteria Investigated by Using Rabbit Antisera ................................. 23
  4.1 Introduction: The Problem of HLA-B27 in Ankylosing Spondylitis . 23
  4.2 Rabbit Immunisations ..................................................... 23
  4.3 Immunodiffusion Experiments ............................................. 24
  4.4 Haemagglutination Method ............................................... 25
  4.5 Bacterial Agglutination .................................................... 25
  4.6 Radio-Binding Assay with Klebsiella Sonicate Preparation (KSP) ................................................................. 26
  4.7 Lymphocytotoxicity Assay .................................................. 26
  4.8 Results of Immunodiffusion Experiments ................................ 27
  4.9 Haemagglutination Results ................................................. 28
  4.10 Bacterial Agglutination Results .......................................... 29
  4.11 Results of Radio-Binding Assay with Klebsiella Sonicate Preparation (KSP) .................................................. 29
  4.12 Cytotoxicity Results ...................................................... 30
  4.13 Discussion and Conclusions .............................................. 31
References ........................................................................... 32

5 Molecular Mimicry Between HLA-B27 and Klebsiella Bacteria Investigated by Using Human Tissue Typing Sera .............. 35
  5.1 Introduction: Molecular Mimicry and Tissue Typing Sera .......... 35
  5.2 Bristol ............................................................................. 36
  5.3 HLA Tissue Typing Sera .................................................... 36
  5.4 Haemagglutination Method ............................................... 36
  5.5 Labelling of Klebsiella Sonicate Preparation (KSP) .................. 36
  5.6 Radio-Binding Assay for 125I-Klebsiella Sonicate Preparation .... 37
  5.7 Competition Assay for 125I-Klebsiella Sonicate Preparation ...... 37
  5.8 Results of Haemagglutination Studies with HLA Typing Sera ...... 38
  5.9 Results of Radio-Binding Assay for 125I-Klebsiella Sonicate Preparation by HLA Typing Sera .............................. 38
References ........................................................................... 38
5.10 Results of Competition Binding Assays ........................................ 40
5.11 Discussion and Conclusions ...................................................... 40
References .................................................................................. 43

6 Muscle Changes in Ankylosing Spondylitis ........................................ 45
6.1 Introduction: Involvement of Muscle Pathology in Ankylosing Spondylitis .................................................. 45
6.2 Muscle Stiffness, Muscle Pain and the Enthesis ................................ 45
6.3 Patients and Controls .................................................................. 46
6.4 Blood Samples, Muscle Biopsies and Histology ............................... 46
6.5 Muscle Strength and Electromyographic Studies .............................. 47
6.6 Results of Histological and Biochemical Investigations .................. 47
6.7 Muscle Strength Measurements and Surface Electromyography .......... 48
6.8 Pathological and Clinical Implications ......................................... 49
References .................................................................................. 50

7 Raised Serum IgA Is Present in Ankylosing Spondylitis Patients .......... 51
7.1 Introduction: Immunoglobulin Levels and Disease Activity in Ankylosing Spondylitis .................................................. 51
7.2 Ankylosing Spondylitis Patients and Controls ................................ 52
7.3 Methods Used in Estimating Serum Immunoglobulins ....................... 52
7.4 Results of Serum IgA Estimations .................................................. 52
7.5 Results of Serum IgG Estimations .................................................. 53
7.6 Results of Serum IgM Estimations .................................................. 56
7.7 Discussion ................................................................................. 57
7.8 Pathological and Clinical Implications ......................................... 58
References .................................................................................. 58

8 Faecal Cultures in Ankylosing Spondylitis and Uveitis ......................... 61
8.1 Introduction: The Origin of Ankylosing Spondylitis ........................... 61
8.2 Ankylosing Spondylitis Patients and Controls ................................ 62
8.2.1 Active Disease ...................................................................... 62
8.2.2 Probably Active Disease ......................................................... 63
8.2.3 Inactive Disease .................................................................... 63
8.3 Collection and Investigations of Urinary and Faecal Specimens ........... 63
8.4 Results of Urine Investigations ...................................................... 64
8.5 Results of Faecal Investigations .................................................... 64
8.6 Acute Anterior Uveitis and Faecal Cultures ..................................... 65
8.7 Results of Faecal Cultures in Patients with Uveitis ............................ 66
8.8 Discussion ................................................................................. 66
8.9 Pathological and Clinical Implications ......................................... 67
References .................................................................................. 67
9 Biochemical Parameters and Klebsiella in Ankylosing Spondylitis

9.1 Introduction: The Use of Biochemical Parameters in Ankylosing Spondylitis

9.2 Selection of Ankylosing Spondylitis Patients and Controls

9.3 Assessment of Disease Activity

9.3.1 Active Disease

9.3.2 Probably Active Disease

9.3.3 Inactive Disease

9.4 Methods Used in These Studies

9.4.1 C-Reactive Protein Estimation

9.4.2 Erythrocyte Sedimentation Rate Measurement

9.4.3 Faecal Cultures

9.5 C-Reactive Protein and Disease Activity

9.6 Erythrocyte Sedimentation Rate and Disease Activity

9.7 Isolation of Klebsiella and Disease Activity

9.8 C-Reactive Protein and Erythrocyte Sedimentation Rate in Ankylosing Spondylitis Patients with and Without Klebsiella

9.9 Discussion

9.10 Pathological and Clinical Implications

References

10 Binding of Klebsiella Antisera to HLA-B27 Cells

10.1 Introduction: The Problem of HLA-B27 in Ankylosing and Its Link to Klebsiella

10.2 Patients and Control Subjects

10.3 Rabbit Antisera

10.4 Specificity Tests on Antisera

10.5 Enzyme Immunoassay to Investigate the Binding of Anti-Klebsiella Sonicate Preparation to HLA-B27 Lymphocytes

10.6 Absorption Experiments

10.7 Results of Antisera Specificity

10.8 Results of Enzyme Immunoassay and Absorption Experiments

10.9 Pathological and Clinical Implications

References

11 IgA Antibodies to Klebsiella and Other Gram-Negative Bacteria in Ankylosing Spondylitis

11.1 Introduction: The Problem of Elevated Serum IgA in Ankylosing Spondylitis and Its Link to Klebsiella

11.2 Selection of Serum Samples from Ankylosing Spondylitis Rheumatoid Arthritis, Psoriasis Patients and Healthy Controls

11.3 Enzyme-Linked Immunosorbent Assay (ELISA)

11.4 Absorption Studies

11.5 C-Reactive Protein Results
### 11.6 Total Serum IgA Values
11.7 IgA Antibodies to *Klebsiella*
11.8 Faecal Cultures and Anti-*Klebsiella* Antibodies
11.9 Second Study Against the Gram-Negative Microorganisms: *Klebsiella, Salmonella, Yersinia* and *Pseudomonas*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6 Total Serum IgA Values</td>
<td>94</td>
</tr>
<tr>
<td>11.7 IgA Antibodies to <em>Klebsiella</em></td>
<td>94</td>
</tr>
<tr>
<td>11.8 Faecal Cultures and Anti-<em>Klebsiella</em> Antibodies</td>
<td>97</td>
</tr>
<tr>
<td>11.9 Second Study Against the Gram-Negative Microorganisms: <em>Klebsiella, Salmonella, Yersinia</em> and <em>Pseudomonas</em></td>
<td>97</td>
</tr>
<tr>
<td>11.9.1 Serum C-Reactive Protein Level</td>
<td>99</td>
</tr>
<tr>
<td>11.9.2 Serum IgA</td>
<td>99</td>
</tr>
<tr>
<td>11.9.3 Serum IgG</td>
<td>99</td>
</tr>
<tr>
<td>11.9.4 Serum IgM</td>
<td>100</td>
</tr>
<tr>
<td>11.9.5 ELISA IgA Antibodies</td>
<td>100</td>
</tr>
<tr>
<td>11.9.6 ELISA IgG Antibodies</td>
<td>101</td>
</tr>
<tr>
<td>11.9.7 ELISA IgM Antibodies</td>
<td>102</td>
</tr>
<tr>
<td>11.10 Pathological and Clinical Implications</td>
<td>102</td>
</tr>
<tr>
<td>References</td>
<td>103</td>
</tr>
</tbody>
</table>

### 12 IgA Antibodies to *Klebsiella* Measured by Immunoblotting

12.1 Introduction: The Problem of Elevated Serum IgA in Ankylosing Spondylitis and Its Link to *Klebsiella*

12.2 Selection of Serum Samples from Ankylosing Spondylitis, Rheumatoid Arthritis Patients and Healthy Controls

12.3 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)

12.3.1 Immunoblot Analysis

12.4 Characteristics of the Four Study Groups

12.5 Analysis of the Results of the Immunoblotting Assay

12.6 Comparison of Serum and Synovial Fluids

12.7 Pathological and Clinical Implications

12.8 References

### 13 Antibodies to *Klebsiella* in Ankylosing Spondylitis Measured by Bacterial Agglutination and ELISA Against Lipopolysaccharides

13.1 Introduction: Gram-Negative Bacteria in Ankylosing Spondylitis

13.2 First Study: Patients and Controls

13.3 Statistical Analysis of Patient Groups and Controls

13.4 Coombs Agglutination Assay

13.5 Results of Coombs Agglutination Assay

13.6 Second Study: Patients and Controls

13.7 ELISA of Bacterial Lipopolysaccharide Samples

13.8 Results of Study on Bacterial Lipopolysaccharides

13.9 Clinical Implications and Discussion

13.10 References
14 Dutch and German Patients with Ankylosing Spondylitis Have Antibodies to Klebsiella

14.1 The Netherlands Connection: An Introduction
14.2 Amsterdam: Location and History
14.3 Patients and Controls
14.4 Serum C-Reactive Protein Levels
14.5 Indirect Immunofluorescence Studies with Klebsiella in Ankylosing Spondylitis and Acute Anterior Uveitis Patients and Proteus in Rheumatoid Patients from the Netherlands
14.5.1 IgA Antibodies to Klebsiella pneumoniae
14.5.2 IgG Antibodies to Proteus mirabilis
14.6 German Studies on Klebsiella in Ankylosing Spondylitis
14.6.1 Lübeck
14.6.2 Kiel
14.7 ELISA Studies on German Patients
14.8 Clinical Implications and Conclusions
14.9 Conclusions
References

15 Spanish, Finnish and Swedish Patients with Ankylosing Spondylitis Have Antibodies to Klebsiella

15.1 The Spanish Connection: An Introduction
15.2 Barcelona: Location and History
15.3 Catalan Patients and Controls
15.4 Statistical Analysis
15.5 Results on Catalan Patients
15.6 Turku: The Finland Connection
15.7 Results of Finnish Patients
15.8 Uppsala and the Swedish Connection
15.9 Swedish Studies
15.10 General Discussion and Conclusions
References

16 Molecular Mimicry Between Klebsiella Pullulanase Enzyme, HLA-B27 and Collagens I and IV

16.1 Introduction: The Association of HLA-B27 with Ankylosing Spondylitis Is the Central Research Issue in This Disease
16.2 Computer Search for Other Klebsiella Proteins Cross-Reacting with HLA-B27
16.3 Peptide ELISA Studies in Ankylosing Spondylitis Patients
16.3.1 B*2705 Results
16.3.2 pulD Peptide Results
16.3.3 Scrambled Control Peptide Results
16.4 Pullulan and Pullulanase
### 16.5 ELISA Studies on Effect of Antibody in Bacteria Grown in Presence or Absence of Pullulan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.5.1 Results of ELISA Studies in Ankylosing Spondylitis Patients</td>
<td>149</td>
</tr>
<tr>
<td>16.5.2 Results of ELISA Studies in Rheumatoid Arthritis Patients</td>
<td>149</td>
</tr>
<tr>
<td>16.6 Serum Antibodies to the Pullulanase (pullA) Enzyme</td>
<td>149</td>
</tr>
<tr>
<td>16.7 ELISA Studies on Collagen Types I and IV</td>
<td>151</td>
</tr>
<tr>
<td>16.8 Discussion and Conclusions</td>
<td>153</td>
</tr>
</tbody>
</table>

### References

- References: 157

### 17 Antibodies to Klebsiella and HLA-B27 Peptides in Ankylosing Spondylitis Patients from Southern Japan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 The Japanese Connection: An Introduction</td>
<td>159</td>
</tr>
<tr>
<td>17.2 Otsu: Location and History</td>
<td>160</td>
</tr>
<tr>
<td>17.3 Patients and Controls</td>
<td>160</td>
</tr>
<tr>
<td>17.4 Results of ELISA Studies on Bacteria</td>
<td>161</td>
</tr>
<tr>
<td>17.5 Results of ELISA Studies on HLA-B27 and Pullulanase Peptide Sequences</td>
<td>163</td>
</tr>
<tr>
<td>17.5.1 Antibodies to the HLA-B27 Sequence</td>
<td>164</td>
</tr>
<tr>
<td>17.5.2 Antibodies to the Pullulanase-D Peptide</td>
<td>165</td>
</tr>
<tr>
<td>17.5.3 Antibodies to Scrambled pullD Control Peptide</td>
<td>167</td>
</tr>
<tr>
<td>17.6 Discussion and Conclusions</td>
<td>167</td>
</tr>
</tbody>
</table>

### References

- References: 169

### 18 Ankylosing Spondylitis Sera Are Cytotoxic to Cells Bearing HLA-B27 Sequences

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Introduction: The Association of HLA-B27 with the Klebsiella Nitrogenase and Klebsiella Pullulanase Enzymes</td>
<td>171</td>
</tr>
<tr>
<td>18.2 Antibodies to Klebsiella Nitrogenase Reductase in Patients with Ankylosing Spondylitis</td>
<td>172</td>
</tr>
<tr>
<td>18.3 Sera from Ankylosing Spondylitis and Rheumatoid Arthritis Patients</td>
<td>173</td>
</tr>
<tr>
<td>18.4 Synthetic Peptides and ELISA</td>
<td>174</td>
</tr>
<tr>
<td>18.5 Antibodies to Peptide Antigens in Ankylosing Spondylitis Patients</td>
<td>175</td>
</tr>
<tr>
<td>18.5.1 Antibodies to the HLA-B27 Peptide</td>
<td>175</td>
</tr>
<tr>
<td>18.5.2 Antibodies to the Klebsiella pneumoniae Nitrogenase Peptide</td>
<td>175</td>
</tr>
<tr>
<td>18.5.3 Antibodies to the Klebsiella pneumoniae Pullulanase Peptide</td>
<td>175</td>
</tr>
<tr>
<td>18.6 Antibodies to Peptide Antigens in Rheumatoid Arthritis Patients</td>
<td>176</td>
</tr>
<tr>
<td>18.6.1 HLA-DRB1*0404 Peptide</td>
<td>176</td>
</tr>
</tbody>
</table>
18.6.2 *Proteus mirabilis* Haemolysin Peptide ............... 176
18.6.3 Type XI Collagen Peptide ........................................ 176
18.7 Preparation of Sheep Red Blood Cells for Cytotoxicity
   Assay ................................................................. 177
18.8 Cytotoxicity Studies in Ankylosing Spondylitis Patients .... 178
18.9 Cytotoxicity Studies in Rheumatoid Arthritis Patients .......... 179
   18.9.1 EQRRAA Peptide ............................................... 179
   18.9.2 LRREI Peptide ................................................. 180
   18.9.3 EDERAA Peptide ................................................. 181
18.10 Discussion and Conclusions ........................................ 181
References ................................................................. 184

19 Pathogenesis of Ankylosing Spondylitis
   and *Klebsiella* Substrates .............................................. 187
   19.1 Introduction: The Association of Serum IgA in Ankylosing
       Spondylitis Points to a Bowel Microbe ......................... 187
   19.2 Marseille: Location and History ................................. 190
   19.3 Lymphangiographic Studies ....................................... 190
   19.4 The Proposed Model for the Pathogenesis of
       Ankylosing Spondylitis ............................................ 191
   19.5 Importance for Early Diagnosis of Ankylosing Spondylitis .... 194
   19.6 The Concept of ‘Gram-Negative Reactive Arthritis’
       and HLA-B27 ....................................................... 194
      19.6.1 Paronen’s Study .............................................. 194
      19.6.2 The ‘USS Little Rock’ Epidemic ........................... 195
      19.6.3 *Salmonella* Reactive Arthritis in Finland ............. 195
      19.6.4 *Yersinia* Reactive Arthritis ............................. 195
   19.7 Starch as the Source of the Main Bacterial Substrate in the Gut .. 196
      19.7.1 A Patient Provides an Important Clue ....................... 196
      19.7.2 Fecal Flora in Vegetarian Seventh Day Adventists .......... 196
      19.7.3 Carbohydrates as Bacterial Substrates ..................... 197
      19.7.4 Ileostomy Studies ............................................. 197
      19.7.5 Oral Hydrogen Excretion Studies ........................... 197
   19.8 Composition of the ‘Low Starch Diet’ ........................... 200
   19.9 Discussion and Conclusions ....................................... 200
References ................................................................. 202

20 Ankylosing Spondylitis and the ‘Low-Starch Diet’ .................. 203
   20.1 Introduction: The Therapeutic Imperative ........................ 203
   20.2 Current Therapeutic Interventions ................................ 203
      20.2.1 Physiotherapy and Exercise .................................. 203
      20.2.2 Sulphasalazine ............................................... 204
      20.2.3 Sulphasalazine and *Klebsiella* ........................... 204
      20.2.4 Moxifloxacin in Ankylosing Spondylitis ................... 204
20.3 ‘Low-Starch Diet’ in Controls ........................................... 205
  20.3.1 Open Study with 21 Healthy Controls .......................... 205
  20.3.2 Nutritionally Controlled Study with
       11 Healthy Subjects ............................................ 205
20.4 The ‘Low-Starch Diet’ in Ankylosing Spondylitis Patients ...... 207
  20.4.1 How Not to Do ‘Coded Runs’ Involving Diet
       Modification ....................................................... 207
  20.4.2 Ankylosing Spondylitis Patients Partaking
       in the Diet Study .................................................. 209
  20.4.3 Erythrocyte Sedimentation Rate and Haemoglobin
       Correlation ......................................................... 209
  20.4.4 C-Reactive Protein and Haemoglobin Correlation .......... 209
20.5 ‘Low-Starch Diet’ and Levels of Inflammation in Ankylosing
       Spondylitis Patients on the Diet ................................ 211
20.6 Discussion and Conclusions ........................................ 211
20.7 A Patient Followed for 28 years. (Mrs. Beard’s Story) ............ 215
20.8 A Sceptic Tries the ‘Low-Starch Diet’ (George’s Story) .......... 217
20.9 Carol Sinclair and Her Book The IBS Low-Starch Diet ........... 218
References ................................................................. 219

21 The Problem of Crohn’s Disease and Klebsiella ....................... 221
  21.1 Introduction: Crohn’s Disease ...................................... 221
  21.2 Ghent: Location and History ....................................... 221
  21.3 The Link Between Ankylosing Spondylitis and Crohn’s Disease .. 222
  21.4 Birmingham: Location and History ................................ 222
  21.5 Antibodies to Yersinia and Klebsiella but Not Pseudomonas
       in Crohn’s Disease Patients ..................................... 223
  21.6 IBD Patients from the Royal Free Hospital in London Have
       Antibodies to Klebsiella .......................................... 223
  21.7 Coeliac Disease Patients from St. Thomas’ Hospital Do
       Not Have Antibodies Against Klebsiella ....................... 224
  21.8 Antibodies to Klebsiella in Crohn’s Disease and in Ankylosing
       Spondylitis Patients from Scotland ................................ 229
     21.8.1 Glasgow ....................................................... 230
     21.8.2 Edinburgh ................................................... 230
  21.9 Immune Response to Collagens in Patients with Crohn’s Disease
       and Ankylosing Spondylitis ...................................... 231
  21.10 Conclusion: Crohn’s Disease Is Caused by Klebsiella
       in HLA-B27 Negative Individuals ................................ 233
References ................................................................. 234

22 Ankylosing Spondylitis and ‘Popper Sequences’ ...................... 235
  22.1 Introduction to ‘Popper Sequences’ .................................. 235
  22.2 Components of a ‘Popper Sequence’ ................................ 236
Ankylosing spondylitis and Klebsiella
Ebringer, A.
2013, XX, 256 p., Hardcover
ISBN: 978-1-4471-4299-7