Contents

1 Introduction .. 1
 1.1 Background and Motivation 1
 1.2 Biological Snakes 5
 1.2.1 The Anatomy of Snakes 5
 1.2.2 The Locomotion of Snakes 7
 1.3 Previous Work on Modelling, Mechatronics, and Control of Snake Robots 10
 1.3.1 Previous Work on Modelling and Analysis of Snake Robots 10
 1.3.2 Previous Work on Implementation of Physical Snake Robots 16
 1.3.3 Previous Work on Control of Snake Robots .. 22
 1.4 The Scope of This Book 27
 1.4.1 An Analytical Approach 27
 1.4.2 Snake Robots Without a Fixed Base 27
 1.4.3 A Planar Perspective 27
 1.4.4 Locomotion Without Sideslip Constraints 28
 1.4.5 Motion Based on Lateral Undulation 28
 1.5 An Outline of This Book 28
 1.5.1 Outline of Part I—Snake Robot Locomotion on Flat Surfaces 29
 1.5.2 Outline of Part II—Snake Robot Locomotion in Cluttered Environments 32
 1.6 Publications Underlying This Book 34

Part I Snake Robot Locomotion on Flat Surfaces

2 A Complex Model of Snake Robot Locomotion on Planar Surfaces 39
 2.1 The Relation Between This Chapter and Previous Literature 40
 2.2 Basic Notation ... 40
 2.3 The Parameters of the Snake Robot 40
 2.4 The Kinematics of the Snake Robot 42
2.5 The Ground Friction Models

2.5.1 The Friction Models and Their Role in This Book

2.5.2 A Coulomb Friction Model

2.5.3 A Viscous Friction Model

2.6 The Dynamics of the Snake Robot

2.7 Separating Actuated and Unactuated Dynamics

2.8 Partial Feedback Linearisation of the Model

2.9 Chapter Summary

3 Development of a Mechanical Snake Robot for Motion Across Planar Surfaces

3.1 The Relation Between This Chapter and Previous Literature

3.2 The Joint Actuation Mechanism

3.3 The Passive Wheels

3.4 The Power and Control System

3.5 The Experimental Setup of the Snake Robot

3.6 Chapter Summary

4 Analysis and Synthesis of Snake Robot Locomotion

4.1 The Relation Between This Chapter and Previous Literature

4.2 Introduction to Nonlinear Controllability Analysis

4.3 Stabilisability Properties of Planar Snake Robots

4.4 Controllability Analysis of Planar Snake Robots

4.4.1 Controllability with Isotropic Viscous Friction

4.4.2 Controllability with Anisotropic Viscous Friction

4.5 Analysis of Propulsive Forces During Snake Locomotion

4.6 Synthesis of Propulsive Motion for the Snake Robot

4.7 The Gait Pattern Lateral Undulation

4.8 The Control System of the Joints

4.8.1 A Simple Joint Controller

4.8.2 An Exponentially Stable Joint Controller

4.9 Analysis of Turning Motion During Lateral Undulation

4.10 Analysis of Relative Motion Between Consecutive Links During Lateral Undulation

4.11 Chapter Summary

5 Path Following Control and Analysis of Snake Robots Based on the Poincaré Map

5.1 The Relation Between This Chapter and Previous Literature

5.2 Introduction to Poincaré Maps

5.2.1 General Description of Poincaré Maps

5.2.2 Practical Application of Poincaré Maps

5.3 Straight Line Path Following Control of Snake Robots

5.3.1 Control Objective

5.3.2 The Straight Line Path Following Controller

5.4 Stability Analysis of the Path Following Controller Based on the Poincaré Map
5.4.1 Converting the Snake Robot Model to a Time-Periodic Autonomous System ... 97
5.4.2 Specification of the Poincaré Section for the Snake Robot ... 97
5.4.3 Stability Analysis of the Poincaré Map ... 98
5.5 Simulation Study: The Performance of the Path Following Controller .. 100
5.6 Chapter Summary .. 101

6 A Simplified Model of Snake Robot Locomotion on Planar Surfaces 103
6.1 The Relation Between This Chapter and Previous Literature .. 104
6.2 Overview of the Modelling Approach .. 104
6.3 The Kinematics of the Snake Robot ... 107
6.4 The Ground Friction Model .. 109
6.5 The Dynamics of the Snake Robot .. 112
6.5.1 The Translational Dynamics of the Snake Robot .. 112
6.5.2 The Rotational Dynamics of the Snake Robot .. 114
6.6 The Complete Simplified Model of the Snake Robot ... 115
6.7 Discussion of the Simplified Model .. 116
6.7.1 Applications of the Simplified Model .. 116
6.7.2 Accuracy Issues of the Simplified Kinematics ... 116
6.7.3 Accuracy Issues of the Ground Friction Model .. 117
6.7.4 Accuracy Issues of the Rotational Dynamics .. 118
6.8 Stabilisability Analysis of the Simplified Model .. 118
6.9 Controllability Analysis of the Simplified Model .. 119
6.10 Simulation Study: Comparison Between the Complex and the Simplified Model 122
6.10.1 Simulation Parameters .. 122
6.10.2 Relationship Between the Joint Coordinates in the Complex and Simplified Models .. 123
6.10.3 Comparison of Straight Motion ... 123
6.10.4 Comparison of Turning Motion ... 126
6.11 Chapter Summary .. 128

7 Analysis of Snake Robot Locomotion Based on Averaging Theory ... 131
7.1 The Relation Between This Chapter and Previous Literature .. 132
7.2 Introduction to Averaging Theory ... 132
7.3 The Velocity Dynamics During Lateral Undulation .. 133
7.4 The Averaged Velocity Dynamics During Lateral Undulation ... 135
7.5 The Steady-State Behaviour of the Velocity Dynamics During Lateral Undulation 136
7.6 Relationships Between the Gait Parameters and the Forward Velocity During Lateral Undulation ... 138
7.7 Simulation Study: Comparison Between the Original and the Averaged Velocity Dynamics ... 139
7.7.1 Simulation Parameters .. 139
7.7.2 Simulation Results .. 140
8 Path Following Control of Snake Robots Through a Cascaded Approach

8.1 The Relation Between This Chapter and Previous Literature

8.2 Mathematical Preliminaries

8.3 Straight Line Path Following Control of Snake Robots

8.3.1 Control Objective

8.3.2 Assumptions

8.3.3 Model Transformation

8.3.4 The Straight Line Path Following Controller

8.3.5 The Stability Properties of the Path Following Controller

8.3.6 Proof of Theorem 8.2

8.4 Path Following Control of Snake Robots Along Curved Paths

8.4.1 Comments on the Curved Path Following Controller

8.4.2 The Curved Path Following Controller

8.5 Waypoint Guidance Control of Snake Robots

8.5.1 Description of the Approach

8.5.2 The Waypoint Guidance Strategy

8.6 Simulation Study: The Performance of the Straight Line Path Following Controller

8.6.1 Simulation Parameters

8.6.2 Simulation Results

8.7 Experimental Study: The Performance of the Straight Line Path Following Controller

8.7.1 Implementation Issues

8.7.2 Implementation of the Path Following Controller of the Physical Snake Robot

8.7.3 Experimental Results

8.8 Simulation Study: The Performance of the Waypoint Guidance Strategy

8.8.1 Implementation of the Guidance Strategy with the Simplified Model

8.8.2 Implementation of the Guidance Strategy with the Complex Model

8.8.3 Simulation Results

8.9 Chapter Summary
Part II Snake Robot Locomotion in Cluttered Environments

9 Introduction to Part II ... 189

10 A Hybrid Model of Snake Robot Locomotion in Cluttered Environments ... 193
 10.1 The Relation Between This Chapter and Previous Literature ... 194
 10.2 Hybrid Dynamical Systems and Complementarity Systems ... 195
 10.2.1 Modelling of Hybrid Dynamical Systems ... 195
 10.2.2 Complementarity Systems ... 196
 10.3 The Dynamics of the Snake Robot Without Obstacles ... 197
 10.3.1 The Ground Friction Model ... 198
 10.3.2 The Equations of Motion Without Obstacles .. 199
 10.4 Overview of the Contact Modelling Approach ... 200
 10.5 Detection of Obstacle Impacts and Detachments .. 203
 10.6 The Continuous Dynamics of the Snake Robot During Constrained Motion ... 204
 10.6.1 The Unilateral Constraints from the Obstacles ... 205
 10.6.2 The Constrained Dynamics of the Snake Robot Without Obstacle Friction 206
 10.6.3 The Constrained Dynamics of the Snake Robot with Obstacle Friction 209
 10.7 The Discontinuous Dynamics of the Snake Robot During Obstacle Impacts and Detachments 211
 10.7.1 The Discontinuous Dynamics of the Snake Robot During Obstacle Impacts 211
 10.7.2 The Discontinuous Dynamics of the Snake Robot During Obstacle Detachments 212
 10.8 The Complete Hybrid Model of the Snake Robot in an Obstacle Environment ... 213
 10.8.1 The Jump Set ... 213
 10.8.2 The Jump Map .. 214
 10.8.3 The Flow Set ... 214
 10.8.4 The Flow Map .. 215
 10.8.5 Summary of the Complete Hybrid Plant ... 215
 10.9 Simulation Study: Comparison of the Hybrid Model with Previous Experimental and Simulation Results 215
 10.10 Chapter Summary ... 216

11 Development of a Mechanical Snake Robot for Obstacle-Aided Locomotion ... 221
 11.1 The Relation Between This Chapter and Previous Literature ... 221
 11.2 Overview of the Snake Robot Design .. 222
 11.3 The Exterior Gliding Surface .. 223
 11.4 The Contact Force Measurement System .. 224
 11.4.1 Assumptions Underlying the Sensor System ... 224
11.4.2 The Sensor System Setup .. 225
11.4.3 Calculation of Contact Forces 227
11.5 The Power and Control System 228
 11.5.1 The Power System ... 228
 11.5.2 The Control System 230
11.6 The Performance of the Snake Robot 231
 11.6.1 Experimental Validation of the Contact Force
 Measurement System 231
 11.6.2 Demonstration of Motion Patterns 232
11.7 The Experimental Setup of the Snake Robot 233
11.8 An Alternative Approach for Measuring External Contact Forces 235
11.9 Chapter Summary ... 237

12 Hybrid Control of Obstacle-Aided Locomotion 239
 12.1 The Relation Between This Chapter and Previous Literature 240
 12.2 Preliminary Note on Hybrid Controllers 241
 12.3 Control Objective .. 242
 12.4 Notation and Basic Assumptions 242
 12.5 The Hybrid Controller for Obstacle-Aided Locomotion 244
 12.5.1 The Leader-Follower Scheme 244
 12.5.2 The Jam Detection Scheme 246
 12.5.3 The Jam Resolution Scheme 246
 12.5.4 The Joint Angle Controller 248
 12.5.5 The Complete Hybrid Controller 248
 12.6 Summary of the Closed-Loop System 251
 12.7 Simulation Study: The Performance of the Hybrid Controller 252
 12.7.1 Simulation Parameters 252
 12.7.2 Attempting Lateral Undulation in Open-Loop in a
 Structured Obstacle Environment 253
 12.7.3 Hybrid Controller in an Obstacle Environment 253
 12.8 Experimental Study: The Performance of the Hybrid Controller ... 255
 12.8.1 Experimental Setup 256
 12.8.2 Experimental Results 256
 12.9 Chapter Summary ... 263

13 Path Following Control of Snake Robots in Cluttered Environments 265
 13.1 The Relation Between This Chapter and Previous Literature 266
 13.2 A Controller Framework for Snake Robot Locomotion 266
 13.3 Straight Line Path Following Control in Cluttered Environments ... 268
 13.3.1 Control Objective 268
 13.3.2 Notation and Basic Assumptions 269
 13.3.3 The Body Wave Component 271
 13.3.4 The Environment Adaptation Component 272
 13.3.5 The Heading Control Component 273
 13.3.6 The Joint Angle Controller 274
 13.3.7 Summary of the Path Following Controller 274

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4</td>
<td>Waypoint Guidance Control in Cluttered Environments</td>
<td>275</td>
</tr>
<tr>
<td>13.5</td>
<td>Simulation Study: The Performance of the Path Following Controller</td>
<td>276</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Simulation Parameters</td>
<td>276</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Simulation Results</td>
<td>277</td>
</tr>
<tr>
<td>13.6</td>
<td>Experimental Study: The Performance of the Environment Adaptation Strategy</td>
<td>279</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Experimental Setup</td>
<td>280</td>
</tr>
<tr>
<td>13.6.2</td>
<td>Experimental Results</td>
<td>280</td>
</tr>
<tr>
<td>13.7</td>
<td>Chapter Summary</td>
<td>285</td>
</tr>
<tr>
<td>14</td>
<td>Future Research Challenges of Snake Robot Locomotion</td>
<td>287</td>
</tr>
<tr>
<td>14.1</td>
<td>Control Design Challenges</td>
<td>287</td>
</tr>
<tr>
<td>14.2</td>
<td>Hardware Design Challenges</td>
<td>289</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Proof of Lemma 8.2</td>
<td>293</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Proof of Lemma 8.3</td>
<td>295</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Low-Pass Filtering Reference Models</td>
<td>297</td>
</tr>
<tr>
<td>C.1</td>
<td>A 2nd-Order Low-Pass Filtering Reference Model</td>
<td>297</td>
</tr>
<tr>
<td>C.2</td>
<td>A 3rd-Order Low-Pass Filtering Reference Model</td>
<td>298</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>313</td>
</tr>
</tbody>
</table>
Snake Robots
Modelling, Mechatronics, and Control
Liljebäck, P.; Pettersen, K.Y.; Stavdahl, O.; Gravdahl, J.T.
2013, XVII, 317 p. 124 illus., 122 illus. in color., Hardcover
ISBN: 978-1-4471-2995-0