Contents

Part I General Characteristics of the Hilly Region of Middle and Lower Yangtze River

1 Ecological and Environmental Characteristics in the Hilly Region of Middle and Lower Yangtze River 3
 1.1 Introduction .. 3
 1.2 Physiographic Conditions 5
 1.3 The Vegetation Characteristics 8
 1.3.1 Distribution of Vegetation in the Middle and Lower Reaches of the Yangtze River 8
 1.3.2 The Characteristics of Biodiversity in the Middle and Lower Reaches of the Yangtze River 9
 1.3.3 Current Situation and Existing Problems of Biodiversity ... 10
 1.3.4 Biodiversity Crisis 12
 1.4 Soil Characteristics and Nutrient Status 13
 1.4.1 Main Soil Types 13
 1.4.2 The Soil Characteristics and Existing Problems .. 14
 1.5 The Current Situation of Soil Erosion and Its Causes 18
 1.5.1 The Current Situation of Soil Erosion 18
 1.5.2 Factors Causing Soil Erosion 19
 1.5.3 The Characteristics of Soil Erosion 24

References .. 26

Part II Development and Application of Soil Loss Models for Soil Loss Prediction in the Shangshe Catchment, Dabie Mountains, China

2 Calculation of Water and Sediment Discharge Using an Integral Calculus Method ... 31
 2.1 Introduction ... 31
 2.2 Study Area .. 32
 2.3 Materials and Methods 33
 2.3.1 Water Runoff Observation 33

xiii
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2 Precipitation Observation</td>
<td>36</td>
</tr>
<tr>
<td>2.3.3 Suspended Sediment Observation</td>
<td>36</td>
</tr>
<tr>
<td>2.4 Method to Calculate the Amount of Water and Sediment Discharge</td>
<td>37</td>
</tr>
<tr>
<td>2.4.1 Method to Calculate the Amount of Water Discharge</td>
<td>37</td>
</tr>
<tr>
<td>2.4.2 Method to Calculate Sediment Load</td>
<td>41</td>
</tr>
<tr>
<td>2.5 Comparison of Soil Loss Among Various Types of Land Use</td>
<td>41</td>
</tr>
<tr>
<td>References</td>
<td>46</td>
</tr>
<tr>
<td>3 Development of the GOIUG Model with a Focus on the Influence of Land Use in the Shangshe Catchment</td>
<td>47</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>47</td>
</tr>
<tr>
<td>3.2 The Study Area</td>
<td>49</td>
</tr>
<tr>
<td>3.3 Materials and Methods</td>
<td>49</td>
</tr>
<tr>
<td>3.3.1 Water Runoff Observation and Precipitation</td>
<td>49</td>
</tr>
<tr>
<td>3.3.2 Suspended Sediment Observation</td>
<td>49</td>
</tr>
<tr>
<td>3.3.3 GOIUG Model</td>
<td>51</td>
</tr>
<tr>
<td>3.4 Results and Discussion</td>
<td>56</td>
</tr>
<tr>
<td>3.4.1 The Results of Calculated SISSD Graph Compared with Observed Ones</td>
<td>56</td>
</tr>
<tr>
<td>3.4.2 Discussion</td>
<td>63</td>
</tr>
<tr>
<td>References</td>
<td>64</td>
</tr>
<tr>
<td>4 GIS-Based ER-USLE Model to Predict Soil Loss in Cultivated Land</td>
<td>65</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>65</td>
</tr>
<tr>
<td>4.2 Materials and Methods</td>
<td>66</td>
</tr>
<tr>
<td>4.2.1 Study Area</td>
<td>66</td>
</tr>
<tr>
<td>4.2.2 Field Observations at the USLE-Plot Scale and the Micro-plot Scale</td>
<td>67</td>
</tr>
<tr>
<td>4.2.3 Field Observations at the Sub-Catchment Scale</td>
<td>68</td>
</tr>
<tr>
<td>4.2.4 Precipitation Observation</td>
<td>68</td>
</tr>
<tr>
<td>4.2.5 Proposal for Use of ER-USLE Model for Annual Soil Loss Prediction Based on Single Events</td>
<td>68</td>
</tr>
<tr>
<td>4.3 Calculation of the Factors Used in the ER-USLE Model</td>
<td>70</td>
</tr>
<tr>
<td>4.3.1 R_e Factor</td>
<td>70</td>
</tr>
<tr>
<td>4.3.2 LS Factor</td>
<td>71</td>
</tr>
<tr>
<td>4.3.3 LS Factor at the Sub-catchment Scale</td>
<td>72</td>
</tr>
<tr>
<td>4.3.4 K Factor</td>
<td>73</td>
</tr>
<tr>
<td>4.3.5 C_1 Factor</td>
<td>74</td>
</tr>
<tr>
<td>4.3.6 P Factor</td>
<td>74</td>
</tr>
<tr>
<td>4.3.7 P_s and C_s Factors</td>
<td>75</td>
</tr>
<tr>
<td>4.4 Results and Discussion</td>
<td>76</td>
</tr>
<tr>
<td>References</td>
<td>79</td>
</tr>
</tbody>
</table>
5 Development and Test of GIS-Based FUSLE Model in Sub-catchments of Chinese Fir Forest and Pine Forest in the Dabie Mountains, China .. 81
5.1 Introduction .. 81
5.2 Study Area .. 83
5.3 Materials and Methods 83
 5.3.1 Field Observation at the Sub-catchment Scale 83
 5.3.2 Precipitation Observation 83
 5.3.3 Field Observations at the USLE-Plot and Micro-plot Scales .. 84
 5.3.4 FUSLE Model for Soil Loss Prediction 84
5.4 Factors in FUSLE Model 85
 5.4.1 \(R_e \) Factor 85
 5.4.2 \(L \) and \(S \) Factors 87
 5.4.3 \(K \) Factor 89
 5.4.4 \(C \) Factor 89
 5.4.5 Litter Factor 89
5.5 Results .. 90
5.6 Application and Test of FUSLE in a Sub-catchment of Pine Forest .. 92
 5.6.1 Materials and Field Observations of Runoff and Soil Loss in the Sub-catchment of Pine Forest 92
 5.6.2 Application and Test of FUSLE in the Sub-catchment of Pine Forest 93
5.7 Conclusions .. 97
References .. 98

6 Spatial Variability of Soil Erodibility (\(K \) Factor) at a Catchment Scale in Nanjing, China 101
6.1 Introduction .. 101
6.2 Materials and Method 102
 6.2.1 General Situation of the Studied Area 102
 6.2.2 Soil Sampling 103
 6.2.3 Research Methods 104
6.3 Results and Analysis 107
 6.3.1 Descriptive Statistical Analysis of the \(K \) Factor 107
 6.3.2 Semi-variance Function Analysis of the \(K \) Factor .. 108
 6.3.3 Spatial Variation Features of \(K \) Factor 109
 6.3.4 Vertical Variability Characteristics of \(K \) Factor by Different Vegetation Types 111
6.4 Conclusions .. 112
References .. 112

7 Application of a GIS-Based Revised FER-USLE Model in the Shangshe Catchment 115
7.1 Introduction .. 115
7.2 Study Area .. 116
7.3 Materials and Methods 116
 7.3.1 Field Observations of Soil Loss at the
 Micro-plot Scale, the USLE-Plot Scale, the
 Sub-catchment Scale, and the Catchment Scale 116
 7.3.2 Field Observations of Litter Coverage
 and Terrace Conditions 116
 7.3.3 FER-USLE Model 116
7.4 Calculations of Factors in FER-USLE Model 117
 7.4.1 R_e and K Factors 117
 7.4.2 LS Factor 118
 7.4.3 P Factor 119
 7.4.4 P_s and C_s Factors 121
 7.4.5 C_l Factor 122
 7.4.6 Litter Factor 122
7.5 Results ... 123
7.6 Percentage of Predicted SSD by Land Use Using
 the GOIUG and FER-USLE Models 125
7.7 Conclusions ... 126
References ... 127

8 Model of Forest Hydrology Based on Wavelet Analysis 129
 8.1 Introduction .. 129
 8.2 Methods .. 130
 8.2.1 Wavelet Transform 130
 8.2.2 Model of Rainfall–Runoff–Forest Coverage 131
8.3 Application of the Model of Rainfall–Runoff–Forest Coverage 132
 8.3.1 Study Basin 132
 8.3.2 Trend Analysis Results of the Wavelet Transform 133
8.4 Results of Model 134
References ... 138

Part III Practices of Soil Erosion Control in Eastern China

9 Theory of Vegetation Reconstruction for Various
 Management Types with Different Site Conditions 141
 9.1 Site Management Classification 141
 9.2 Characteristics of the Four Management Groups 142
 9.2.1 The Vegetation Reconstruction of the Extreme
 Erosion and Degeneration Site Management Group 142
 9.2.2 The Regeneration and Improvement
 of Secondary Forest Management Group 143
 9.2.3 The Agroforestry Management Group 143
 9.2.4 Good Site Commercial Forest Management Group 144
 9.3 Vegetation Reconstruction Theory of Different Site
 Type Management Groups 144
9.3.1 Management Group of Extremely Eroded and Degenerate Inferior Lands 144
9.3.2 Basic Theory of Vegetation Restoration and Reconstruction in Limestone Hills 148
9.3.3 Agroforestry System Group .. 149
9.3.4 Good Condition Commodity Forest Management Group 155
9.4 Closing Hillsides with Secondary Forest to Culture Forest with Least Human Interference and Regeneration Management Group .. 156
9.4.1 Theory of Closing the Hillside and Regenerating the Secondary Forest 156
9.4.2 Comprehensive Governing Theory of Small Watershed 159

10 Models of Reforestation for Soil Erosion Control in the Hilly Region of the Middle and Lower Reaches of the Yangtze River .. 161
10.1 Introduction .. 161
10.2 The Vegetation Reconstruction Model for Extremely Eroded and Degraded Red Soil Sites Under Harsh Conditions ... 162
10.2.1 Site Features .. 162
10.2.2 Guiding Ideologies for Management 162
10.2.3 Key Techniques .. 163
10.2.4 Application of Models ... 165
10.3 The Stereoscopic Management Model for the Reservoir Area in the Hilly Red Soil Region .. 166
10.3.1 Elements of the Design ... 167
10.3.2 Stereoscopic Management Model 169
10.4 The Vegetation Restoration Model for Harsh Limestone Areas 171
10.4.1 The Features of the Harsh Limestone Areas ... 171
10.4.2 The Guiding Ideology for Management .. 171
10.4.3 Key Techniques ... 171
10.4.4 Application of Models ... 175
10.5 Vegetation Restoration Models in the Abandoned Mining Areas 178
10.5.1 Site Features .. 178
10.5.2 Guiding Ideology for Management .. 179
10.5.3 Key Techniques ... 179
10.6 The Agroforestry Management Models .. 181
10.6.1 The Agroforestry Management Models in Low Hilly Areas 181
10.6.2 Forest–Herb Management Model .. 186
10.6.3 Tree–Tea (Camellia sinensis) Compound Model .. 189
10.6.4 The Forest–Amaranth–Stockbreeding Composite Management Model with Grain Amaranth as the Linkage .. 194

10.6.5 The Composite Management Model of Forest–Agriculture (Amaranth)–Stockbreeding in Limestone Mountainous Regions 200

10.7 Management Models of Commercial Forests with Good Site Features 204

10.7.1 Management Model of Commercial Forests 204

10.7.2 High-Efficiency Intensive Culture of Dual-Purpose Bamboo Forest with Shoot and Timber Orientation .. 209

10.7.3 High-Efficiency Intensive Culture of High-Quality Oil Tea (Camellia oleifera) Forest 211

11 Effect of Afforestation on Soil and Water Conservation 213

11.1 The Amount of Soil Erosion in Different Types of Lands 213

11.2 Loss of Soil Nutrient Elements in Different Types of Reforestations .. 218

11.3 The Effect of Reforestation on Plant Biodiversity 223

11.4 Improvement Effect of Reforestation on Micrometeorology 228

11.4.1 The Improvement Effect of Rehabilitated Forest Ecosystem on Micrometeorology 228

11.4.2 The Improvement Effect of the Circulation System of Forestry–Agriculture–Husbandry on Micrometeorology 232

11.4.3 Improving the Effect of Composite Management System of Tea–Forest on Micrometeorology .. 235

11.4.4 The Effect of Stereoplaanting Pattern in Orchards on Micrometeorology 238

Reference .. 241

12 A Study on Plant Roots and Soil Anti-scourability in the Shangshe Catchment, Dabie Mountains of Anhui Province, China 243

12.1 Introduction .. 243

12.2 Research Methods ... 245

12.2.1 Choice of Different Types of Plants and an Investigation on Soil and Roots 245

12.2.2 Measurement of Soil Anti-scourability 245

12.3 Results and Analysis .. 246

12.3.1 Distribution Characteristics of the Root Profiles of Different Types of Plants 246

12.3.2 Plant Roots and Soil Anti-scourability 248
12.3.3	Analysis of the Correlation Between Soil Anti-scourability Enhancement Value and Plant Roots	250
12.3.4	Comprehensive Analysis of Soil Stability Function of Root System	250
12.4	Conclusions	252
References	254	

13 Social and Economic Benefits of Forest Reconstruction

13.1	Introduction	257
13.2	Economic Benefits of Forestry–Agriculture Composite Management System	258
13.2.1	Economic Benefits of Forestry–Amaranth–Stockbreeding Composite System	258
13.3	Economic Benefits of the Forest–Tea Composite System	263
13.3.1	Economic Benefits of Persimmon (*Diospyros kaki*)–Tea Composite System	265
13.3.2	Economic Benefits of Slash Pine (*Pinus elliottii*)–Tea Composite System	267
13.3.3	Economic Benefits of Tea Gardens with Composite Management	268
13.4	Economic Benefits of the Forest–Grain Composite System	268
13.5	Economic Benefits of the Forest–Medicine Composite System	268
13.6	Economic Benefits of the Forest–Fruit Composite Management Model	273
13.7	Comprehensive Evaluation of the Economic Benefits of Major Composite Management Models	274

Index | 277 |
Theory and Practice of Soil Loss Control in Eastern China
Zhang, Y.; DeAngelis, D.L.; Zhuang, J.Y.
2011, XIX, 281 p., Hardcover
ISBN: 978-1-4419-9678-7