ILLUMINATING SETS OF CONSTANT WIDTH

ODED SCHRAMM

Abstract. The problem of illuminating the boundary of sets having constant width is considered and a bound for the number of directions needed is given. As a corollary, an estimate for Borsuk's partition problem is inferred. Also, the illumination number of sufficiently symmetric strictly convex bodies is determined.

§1. Introduction. Let x be a point on the boundary ∂K of a convex body* K in Euclidean space, \mathbb{R}^n. A direction $u \in S^{n-1}$ is said to illuminate K at x if the line $\{x + tu | t \in \mathbb{R}\}$ "enters" K in x. More precisely, u illuminates K at x if $x + tu$ is an interior point of K, for some positive t. Instead of saying "u illuminates K at x" we will just say "u illuminates x". This will cause no confusion, because the convex body K should be clear from the context.

Directions $u_1, u_2, \ldots, u_m \in S^{n-1}$ are said to illuminate K if every point on the boundary of K is illuminated by at least one of these directions. We denote by $I(K)$ the minimal number of directions sufficient to illuminate K and call it the illumination number of K. This concept of illumination was introduced by V. G. Boltjansky in [2]. There he proved that for convex bodies K, $I(K)$ is equal to $H(K)$, the number of smaller, positively homothetic copies of K required to cover K (see [3]).

The maximum values of $I(K)$ for convex bodies K in \mathbb{R}^n, are unknown when $n > 2$. By the above result of Boltjansky, Hadwiger's conjecture, about the covering of a set by homothetic copies of it, is equivalent to

$$I(\text{convex body in } \mathbb{R}^n) \leq I(n\text{-dimensional parallelogram}) = 2^n.$$

See [3] for a discussion of this conjecture.

A set of constant width d is a convex body such that the distance between any two distinct parallel supporting hyperplanes of it is d (see [5, pp. 122–131], [4]). In this note we prove

Theorem 1. If W is a set of constant width in \mathbb{R}^n then

$$I(W) < 5n\sqrt{n}(4 + \log n)\left(\frac{3}{2}\right)^{n/2}.$$

The research exposed in this note was done while I was at the Hebrew University in Jerusalem, as a student of Professor Gil Kalai. I am grateful to Kalai for his interest, encouragement and advice, and for valuable improvements of the original manuscript.

* A convex body is a compact convex set that has interior points.

[**Mathematika**, **35** (1988), 180–189]
Using this theorem, and the equivalence $I(W) = H(W)$, we get

Corollary 2. Every set of constant width $W \subseteq \mathbb{R}^n$ can be covered by less than $5n\sqrt{n(4 + \log n)}(3/2)^{n/2}$ homothetic copies of itself, having some homothety coefficient α, $0 < \alpha < 1$.

Since every bounded set of positive diameter is contained in a set of constant width having the same diameter (see [5, p. 126]), we have the following estimate for Borsuk’s partition problem.

Corollary 3. Every set of diameter d ($0 < d < \infty$) in \mathbb{R}^n can be covered by less than $5n\sqrt{n(4 + \log n)}(3/2)^{n/2}$ sets having smaller diameters.

To the best of our knowledge, this is, asymptotically, the best bound known for Borsuk’s partition problem (see [7] for references and results concerning this problem). The approach to Borsuk’s problem through the the illumination problem is suggested in [3] and [8, p. 420].

Theorem 1 is proved using a probabilistic argument: The probability that a “small” region in ∂W will be illuminated by a random, uniformly distributed, direction is estimated from below. A straightforward computation then shows that if “enough” directions are chosen randomly, uniformly, and independently, the probability that they will completely illuminate W is nonzero. An essential part of the proof relies on finding lower bounds for volumes of spherical sets of a certain type. In [11] analogous results for sets in \mathbb{R}^n give lower bounds for the volumes of sets having constant width.

The only known result in the direction opposite to Theorem 1 is that $I(K) \geq n + 1$ for every convex body $K \subseteq \mathbb{R}^n$ ([3]). It is not known if there is a set of constant width $W \subseteq \mathbb{R}^n$, that cannot be illuminated by $n + 1$ directions.

Rogers [10] has shown that every $K \subseteq \mathbb{R}^n$, having diameter $0 < d < \infty$ and invariant under the group of congruences that leave invariant an n-dimensional regular simplex, can be partitioned into $n + 1$ subsets, each with diameter $< d$. Inspired by this, we prove in Section 4 that if K is a strictly convex body† invariant under a group of orthogonal transformations that is generated by reflections through hyperplanes and acts irreducibly‡ on \mathbb{R}^n, then $I(K) = n + 1$. This can give an alternate proof of Rogers’ result.

§2. First we will introduce some notation and give a condition for the illumination of a single boundary point. Throughout this note, K will denote an arbitrary convex body, and W will denote a set of constant width in \mathbb{R}^n. For a set $A \subseteq S^{n-1}$ we define

$$A^+ = \{u \in S^{n-1} | u \cdot v > 0 \text{ for all } v \in A\}.$$

†A strictly convex body is a convex body whose boundary contains no line segment.
‡“G acts irreducibly on \mathbb{R}^n” means that there is no subspace of \mathbb{R}^n, other than 0 and \mathbb{R}^n, which is invariant under all elements of G.
When \(x \) is a boundary point of a convex body \(K \), we use \(N_K(x) \) to denote the set of inward normal unit vectors of \(K \) at \(x \):

\[
N_K(x) = \{ u \in S^{n-1} | u \cdot p \geq u \cdot x \text{ for all } p \in K \}.
\]

Notice that \(N_K(x) \) is nonempty for \(x \in \partial K \).

Lemma 4. Let \(K \) be a convex body in \(\mathbb{R}^n \), let \(x \) be a boundary point of \(K \), and let \(u \in S^{n-1} \). Then \(x \) is illuminated by the direction \(u \), if, and only if, \(u \in N_K(x)^+ \).

Proof. Suppose \(u \in N_K(x)^+ \). If the line \(L = \{ x + tu | t \in \mathbb{R} \} \) contains no interior points of \(K \), then it is a supporting line of \(K \). Therefore there is a hyperplane, \(H = \{ p \in \mathbb{R}^n | p \cdot w = x \cdot w \} \), supporting \(K \) and containing \(L \). Thus one of the vectors \(\pm w/\|w\| \) is in \(N_K(x) \). That is a contradiction to \(u \in N_K(x)^+ \), because \(H \cap L \) implies that \(w \cdot u = 0 \). Therefore \(L \) contains interior points of \(K \). Pick any \(v \in N_K(x) \). \(K \) is contained in the half space \(\{ p \in \mathbb{R}^n | p \cdot v \geq x \cdot v \} \). Since \(u \cdot v > 0 \), this means that the points \(x + tu \) with \(t < 0 \) are not in \(K \). Thus the interior points of \(L \) correspond to positive values of \(t \), and \(u \) illuminates \(x \).

Now suppose that \(u \) illuminates \(x \). Let \(t \) be a positive number such that \(p = x + tu \) is an interior point of \(K \). Because \(p \) is an interior point, for every \(v \in N_K(x) \) we have \(p \cdot v < x \cdot v \), which implies \(u \cdot v > 0 \), so \(u \in N_K(x)^+ \).

From now on, we work with an arbitrary, but fixed, set of constant width \(W \subset \mathbb{R}^n \). The lemma above shows that if \(E \) is a subset of the boundary of \(W \), then one direction can illuminate \(E \), if, and only if,

\[
\bigcap_{x \in E} N_W(x)^+ = \left(\bigcup_{x \in E} N_W(x) \right)^+ \nonumber
\]

is nonempty. The following proposition will help us find subsets of \(\partial W \) that are “easily” illuminated. For a subset \(A \subset S^{n-1} \) define \(U_W(A) \) to be the union of the sets \(N_W(x), x \in \partial W \), that intersect \(A \):

\[
U_W(A) = \bigcup_{N_W(x) \cap A \neq \emptyset} N_W(x). \nonumber
\]

A direction in \(U_W(A)^+ \) illuminates every point \(x \in W \) that satisfies

\[
N_W(x) \cap A \neq \emptyset. \nonumber
\]

In order to show that when \(A \) is chosen properly these points are “easily” illuminated, we want to prove that \(U_W(A)^+ \) is “large”. Our means of doing so is by estimating the diameter of \(U_W(A) \). (We view \(S^{n-1} \) with the metric induced by the Euclidean metric in \(\mathbb{R}^n \). The diameters of subsets of \(S^{n-1} \) refer to this metric.)

Proposition 5. Let \(A \) be a nonempty subset of \(S^{n-1} \). Then

\[
\text{diameter } U_W(A) \leq 1 + \text{diameter } A. \nonumber
\]

Proof. Since \(U_W(A) \) does not change when we replace \(W \) with a positively homothetic copy of itself, we may, and will, assume that \(W \) has constant width.
1, and therefore also diameter 1. Let \(v_1, v_2 \) be unit vectors in \(U_w(A) \). By the definition of \(U_w(A) \), there are points \(x_1, x_2 \in \partial W \) such that \(v_i \in N_w(x_i) \) and
\(N_w(x_i) \cap A \neq \emptyset \) for \(i = 1, 2 \). Suppose \(u_i \) is in \(N_w(x_i) \cap A \), \(i = 1, 2 \). Since \(u_i \) is an inward normal of \(W \) at \(x_i \), and since \(W \) has constant width 1, the hyperplane
\[\{ p \in \mathbb{R}^n \mid p \cdot u_i = x_i \cdot u_i + 1 \} \]
 is a supporting hyperplane of \(W \). The only point on this hyperplane whose distance from \(x_i \) is not greater than 1 is \(x_i + u_i \). Since diameter \(W = 1 \), we conclude that \(x_i + u_i \in \partial W \) for \(i = 1, 2 \). Therefore
\[
1 = (\text{diameter } W)^2 \geq \| (x_1 + u_1) - x_2 \|_2^2 = \| x_1 - x_2 \|_2^2 + 2u_1 \cdot (x_1 - x_2) + 1
\]
and
\[
1 = (\text{diameter } W)^2 \geq \| (x_2 + u_2) - x_1 \|_2^2 = \| x_2 - x_1 \|_2^2 + 2u_2 \cdot (x_2 - x_1) + 1.
\]
Summing these inequalities and rearranging we get
\[
(u_1 - u_2) \cdot (x_2 - x_1) \geq \| x_2 - x_1 \|_2^2.
\]
Because \((u_1 - u_2) \cdot (x_2 - x_1) \leq \| u_1 - u_2 \| \| x_2 - x_1 \|_2\), this implies \(\| u_1 - u_2 \| \geq \| x_2 - x_1 \|_2 \).
So
\[
\| x_2 - x_1 \|_2 \leq \text{diameter } A. \quad (2.1)
\]
As with \(x_i + u_i \), the points \(x_i + v_i \) lie in \(\partial W \), and therefore
\[
1 \geq \| (x_1 + v_1) - (x_2 + v_2) \| \geq \| v_1 - v_2 \| - \| x_2 - x_1 \|.
\]
Using (2.1), this implies
\[
1 + \text{diameter } A \geq \| v_1 - v_2 \|.
\]
We use \(\mu \) to denote the standard probability measure on \(S^{n-1} \). Define
\[
g(n, d) = \inf \{ \mu(A^+) \mid A \subseteq S^{n-1}, \text{diameter } A \leq d \}\).
\]
Let \(N(n, \varepsilon) \) be the number of sets having diameter \(\varepsilon \) that is required to cover \(S^{n-1} \). The core of this note is:

Proposition 6. For \(0 < \varepsilon < \sqrt{2} - 1 \) we have
\[
I(W) \leq 1 + \frac{\log N(n, \varepsilon)}{-\log (1 - g(n, 1 + \varepsilon))}.
\]

Proof. It is easily verified that \(0 < g(n, 1 + \varepsilon) < 1 \) (if \(\emptyset \neq A \subseteq S^{n-1} \) then \(A^+ \) is contained in a hemisphere, so that \(\mu(A^+) \leq \frac{1}{2} \). If also diameter \(A = d < \sqrt{2} \) then \(A^+ \) contains a spherical cap of radius \(\sqrt{2} - d \) around any point of \(A \)), so that the right-hand side is well defined. Let \(M \) be a natural number satisfying
\[
M > \frac{\log N(n, \varepsilon)}{-\log (1 - g(n, 1 + \varepsilon))}.
\]
It is sufficient to show that \(M \) directions can illuminate \(W \). Set \(N = N(n, \varepsilon) \), and let \(A_1, \ldots, A_N \) be a covering of \(S^{n-1} \) with sets of diameter \(\varepsilon \). By Proposition 5, we have diameter \(U_w(A_i) \leq 1 + \varepsilon \), and therefore
\[
\mu(U_w(A_i)^+) \geq g(n, 1 + \varepsilon), \quad i = 1, 2, \ldots, N.
\]
Pick M directions u_1, \ldots, u_M at random, uniformly and independently distributed on S^{n-1}. Take any $i, j, 1 \leq i \leq N$, $1 \leq j \leq M$. The probability that u_j will be in $U_w(A_i)^+$ is $\mu(U_w(A_i)^+)$, which is at least $g(n, 1+\varepsilon)$. Therefore the probability that $U_w(A_i)^+$ will contain none of the points u_1, \ldots, u_M is at most $(1 - g(n, 1+\varepsilon))^M$. Thus the probability p that at least one $U_w(A_i)^+$, $1 \leq l \leq N$ will contain no points of u_1, \ldots, u_M satisfies

$$p \leq \sum_{l=1}^{N} (1 - g(n, 1+\varepsilon))^M < N(1 - g(n, 1+\varepsilon))^\log N / -\log (1 - g(n, 1+\varepsilon)) = 1.$$

This shows that one can choose M directions, so that each set $U_w(A_i)^+$, $l = 1, \ldots, N$, contains at least one of them. Let v_1, \ldots, v_M be such directions, and let x be a point of ∂W. We claim that one of these directions illuminates x. Since $N_w(x)$ is nonempty, and the sets A_1, \ldots, A_N cover S^{n-1}, one of them, say A_i, intersects $N_w(x)$. By the definition of $U_w(A_i)$, we have $N_w(x) \subset U_w(A_i)$. So that

$$N_w(x)^+ \supseteq U_w(A_i)^+.$$

$U_w(A_i)^+$ contains at least one of v_1, \ldots, v_M, say v_k. We have

$$v_k \in U_w(A_i)^+ \subset N_w(x)^+$$

and therefore, by Lemma 4, v_k illuminates x. This shows that the directions v_1, \ldots, v_M illuminate W.

In order to deduce Theorem 1 from Proposition 6, we only have to estimate $g(n, 1+\varepsilon)$ from below, and $N(n, \varepsilon)$ from above. The former will be done in the next section, and the latter is dealt with by the following well known fact.

Lemma 7. $N(n, \varepsilon) \leq (1 + 4/\varepsilon)^n$.

Proof. Let E be a maximal subset of S^{n-1} having the property that $\|u - v\| > \frac{1}{2}\varepsilon$ for $u \neq v$ in E. The maximality of E shows that the balls with radius $\frac{1}{2}\varepsilon$ and centers in E cover S^{n-1}, therefore

$$|E| \geq N(n, \varepsilon).$$

All the balls $B(u, \varepsilon/4)$, $u \in E$, are disjoint and are contained in the ball $B(0, 1+\varepsilon/4)$. Comparing volumes gives

$$|E|(\varepsilon/4)^n \leq (1 + \varepsilon/4)^n,$$

or

$$|E| \leq \left(\frac{4}{\varepsilon} + 1\right)^n.$$

Remark. Better estimates for $N(n, \varepsilon)$ are known (see [9]), but do not seem to contribute any significant improvement to Theorem 1.

§3. In this section we give a lower bound for $g(n, d)$, and prove Theorem 1.
Proposition 8. Let \(d > 0 \) and let \(A \) be a nonempty subset of \(S^{n-1} \) having diameter \(\leq d \). Suppose \(u \in S^{n-1} \), \(a > 0 \) and \(A \) is contained in the half-space \(\{ p \in R^n | p \cdot u \geq a \} \), then

\[A^+ \cup TA^+ \supset D_0(u, \arctan(2a/d)), \]

where \(T : R^n \rightarrow R^n \) is the reflection through the line determined by \(u, -u \):

\[Tp = 2(p \cdot u)u - p, \]

and \(D_0(u, \psi) \) is the open spherical cap consisting of all unit vectors having an angle with \(u \), which is smaller than \(\psi \).

Proof. Suppose \(x \) is a point in \(S^{n-1} \) but not in \(A^+ \cup TA^+ \), and let \(\theta \) be the angular distance between \(x \) and \(u \), \(0 \leq \theta \leq \pi \). Write

\[x = (\cos \theta)u + (\sin \theta)v, \quad (3.1) \]

where \(v \) is a unit vector orthogonal to \(u \) (we ignore the trivial case \(n = 1 \)). Since \(x \notin A^+ \), there is a point \(y \in A \) with

\[0 \geq y \cdot x = y \cdot u \cos \theta + y \cdot v \sin \theta. \quad (3.2) \]

Since \(T^{-1} = T \) and \(x \notin TA^+ \) we have \(Tx \notin A^+ \). Thus there is a point \(z \in A \) with

\[0 \geq z \cdot Tx = z \cdot u \cos \theta - z \cdot v \sin \theta. \quad (3.3) \]

Summing (3.2) and (3.3), and using \(\|y - z\| \leq d \), \(\sin \theta \geq 0 \), we have

\[0 \geq (y \cdot u + z \cdot u) \cos \theta + (y - z) \cdot v \sin \theta \geq (y \cdot u + z \cdot u) \cos \theta - d \sin \theta. \quad (3.4) \]

Temporarily suppose that \(\theta < \frac{1}{2} \pi \). Then \(\cos \theta > 0 \), so by (3.4)

\[\tan \theta \geq \frac{y \cdot u + z \cdot u}{d} \geq \frac{2a}{d}. \]

The last inequality is justified by the hypothesis that \(A \subset \{ p \in R^n | p \cdot u \geq a \} \).

Whether or not \(\theta \leq \frac{1}{2} \pi \), we have \(\theta \geq \arctan(2a/d) \). This shows that \(A^+ \cup TA^+ \supset D_0(u, \arctan(2a/d)). \)

Proposition 9.

\[g(n, d) = \frac{1}{\sqrt{8\pi n}} \left(\frac{3 + (2n + 1) d^2 - (2n + 2)}{4 n + 4 - 2 d^2 n} \right)^{-\frac{(n-1)/2}{2}} \]

for \(0 < d \leq \sqrt{2} \).

Proof. Let \(0 < d \leq \sqrt{2} \) and let \(A \) be a nonempty subset of \(S^{n-1} \) having diameter \(\leq d \). By Jung's theorem [5, p. 111], there is, in \(R^n \), a ball with radius \(d \sqrt{n/(2n+2)} \) containing \(A \). Let \(q \) be the center of this ball. Write \(q = tu \) with \(t \geq 0 \) and \(u \in S^{n-1} \). For every \(x \in A \) we have

\[d^2 \frac{n}{2n + 2} \geq \|x - q\|^2 = \|x - tu\|^2 = 1 - 2tx \cdot u + t^2. \quad (3.5) \]

Since \(1 - 2tx \cdot u + t^2 = 1 - (x \cdot u)^2 + (x \cdot u - t)^2 \geq 1 - (x \cdot u)^2 \), inequality (3.5)
implies
\[d^2 \frac{n}{2n+2} \geq 1 - (\mathbf{x} \cdot \mathbf{u})^2. \] (3.6)

From (3.5), \(t \geq 0 \) and \(d \leq \sqrt{2} \) it can be seen that \(\mathbf{x} \cdot \mathbf{u} \geq 0 \), so, using (3.6), we obtain
\[\mathbf{x} \cdot \mathbf{u} \geq \sqrt{1 - d^2 \frac{n}{2n+2}}. \]

Set
\[a = \sqrt{1 - d^2 \frac{n}{2n+2}}. \] (3.7)

The above argument shows that \(A \) is contained in the half-space
\[\{ \mathbf{p} \in \mathbb{R}^n \mid \mathbf{p} \cdot \mathbf{u} \geq a \}. \]

Proposition 8 can be applied, yielding
\[A^+ \cup TA^+ \supset D_0(\mathbf{u}, \arctan(2a/d)). \]

Now, since \(T \) is an orthogonal transformation, we have \(\mu(A^+) = \mu(TA^+) \), and
\[\mu(A^+) = \frac{1}{2} \mu(A^+) + \mu(TA^+) \geq \frac{1}{2} \mu(A^+ \cup TA^+) \]
\[\geq \frac{1}{2} \mu \left(D_0(\mathbf{u}, \arctan \frac{2a}{d}) \right) = \frac{1}{2} \frac{\text{Vol}_{n-1} D_0(\mathbf{u}, \arctan 2a/d)}{\text{Vol}_{n-1} S^{n-1}} \]
\[= \frac{\text{Vol}_{n-1} D_0(\mathbf{u}, \arctan 2a/d)}{2n \Omega_n}. \] (3.8)

Here \(\Omega_n \) denotes the volume of the \(n \)-dimensional unit ball, and \(\text{Vol}_{n-1} \) is the \((n-1) \)-dimensional volume.

Let \(D' \) be the orthogonal projection of \(D_0(\mathbf{u}, \arctan 2a/d) \) to the hyperplane \(\{ \mathbf{p} \in \mathbb{R}^n \mid \mathbf{p} \cdot \mathbf{u} = 0 \} \). Obviously we have
\[\text{Vol}_{n-1} D_0(\mathbf{u}, \arctan \frac{2a}{d}) \geq \text{Vol}_{n-1} D'. \] (3.9)

\(D' \) is an \((n-1) \)-dimensional ball having radius
\[\sin \left(\arctan \frac{2a}{d} \right) = \left(1 + \frac{d^2}{4a^2} \right)^{-1/2}, \]
so
\[\text{Vol}_{n-1} D' = \Omega_{n-1} \left(1 + \frac{d^2}{4a^2} \right)^{-(n-1)/2}. \] (3.10)

Using (3.8), (3.9), (3.10), we get
\[\mu(A^+) \geq \frac{\Omega_{n-1}}{2n \Omega_n} \left(1 + \frac{d^2}{4a^2} \right)^{-(n-1)/2}. \] (3.11)
Now

\[
\frac{\Omega_{n-1}}{\Omega_n} = \frac{\pi^{(n-1)/2}/\Gamma((1+n)/2)}{\pi^{n/2}/\Gamma(1+n/2)} = \frac{\Gamma(1+n/2)}{\sqrt{\pi} \Gamma((1+n)/2)}
\]

(3.12)

where \(\Gamma \) is the Gamma function. Since \(\log \Gamma \) is convex ([1, p. 12]), we have

\[
\Gamma(1+n/2) \Gamma(n/2) \geq \Gamma((1+n)/2)^2,
\]

and therefore

\[
\frac{\Gamma(1+n/2)}{\Gamma((1+n)/2)} \geq \frac{\Gamma(1+n/2)}{\sqrt{\Gamma(1+n/2) \Gamma(n/2)}} \sqrt{\frac{\Gamma((1+n)/2)^2}{\Gamma(1+n/2) \Gamma(n/2)}}
\]

\[
= \sqrt{\frac{\Gamma(1+n/2)}{\Gamma(n/2)}} = \sqrt{\frac{n}{2}}.
\]

(3.13)

Using (3.11), (3.12), (3.13), we get

\[
\mu(A^+) \geq \frac{1}{2n} \sqrt{\pi} \sqrt{\frac{n}{2}} \left(1 + \frac{d^2}{4a^2}\right)^{-(n-1)/2}.
\]

And after substituting the value of \(a \),

\[
\mu(A^+) \geq \frac{1}{\sqrt{8\pi n}} \left(1 + \frac{d^2}{4-2d^2n/(n+1)}\right)^{-(n-1)/2}
\]

\[
= \frac{1}{\sqrt{8\pi n}} \left(\frac{3}{2} + \frac{(2n+1)d^2 - 2n - 2}{4n + 4 - 2d^2n}\right)^{-(n-1)/2}.
\]

Now proving Theorem 1 is just a matter of putting the pieces together.

Proof of Theorem 1. Since \(t < -\log (1-t) \) for \(0 < t < 1 \), Proposition 6 implies

\[
I(W) < 1 + \frac{\log N(n, \varepsilon)}{g(n, 1+\varepsilon)}, \quad 0 < \varepsilon < \sqrt{2} - 1.
\]

Choose

\[
\varepsilon = \sqrt{1 + \frac{1}{2n+1}} - 1.
\]

From Lemma 7 and Proposition 9 we get

\[
I(W) < 1 + \frac{\log N(n, \varepsilon)}{g(n, 1+\varepsilon)} \leq 1 + \frac{\log \left(1 + \frac{4}{\varepsilon}\right)}{g\left(n, \sqrt{\frac{2n+2}{2n+1}}\right)}
\]

\[
\leq 1 + \sqrt{8\pi n} \left(\frac{3}{2}\right)^{(n-1)/2} n \log \left(1 + \frac{4}{\varepsilon}\right)
\]

\[
= 1 + 4n\sqrt{\pi n/3} \left(\frac{3}{2}\right)^{n/2} \log \left(1 + \frac{4}{\varepsilon}\right).
\]
Since one easily sees that \(\varepsilon > 1/(4n+3) \), we have

\[
I(W) < 1 + 4n\sqrt{\pi n/3} \log (13 + 16n) \left(\frac{3}{2} \right)^{n/2} \leq 5n\sqrt{n(4 + \log n)} \left(\frac{3}{2} \right)^{n/2}
\]

Remarks. 1. In [11] we give a lower bound for the volumes of sets of constant width in \(\mathbb{R}^n \), using results analogous to Propositions 8 and 9.
2. The factor \(5n\sqrt{n(4 + \log n)} \) in Theorem 1 should not be taken seriously. It can be improved with some more careful estimates. However, any improvement of the exponential factor, \((3/2)^{n/2} \), would be interesting. A possible way to do this may be to try to get a better lower bound for \(g(n, d) \). An advance in this direction may lead to better estimates for the minimal volume of a set having constant width 1 in \(\mathbb{R}^n \).

§4.

Theorem 10. Let \(K \subset \mathbb{R}^n \) be a strictly convex body, invariant under a group of orthogonal transformations \(G \) that is generated by reflections through hyperplanes and acts irreducibly on \(\mathbb{R}^n \). Then \(I(K) = n + 1 \).

We preface the proof with a few definitions and a lemma. A unit vector \(r \) is called a root of \(G \) if the orthogonal reflection through the subspace orthogonal to \(r \) is an element of \(G \). We denote this reflection by \(S_r \):

\[
S_r x = x - 2(\langle x, r \rangle) r, \quad x \in \mathbb{R}^n.
\]

If \(v, r \) are roots of \(G \) then \(S_r v \) is also a root of \(G \), because \(S_r S_v = S_r S_r S_r \). In particular \(-r = S_r r \) is a root.

Lemma 11. Let \(G \) be as in Theorem 10. If \(n > 1 \) then there are \(n + 1 \) roots of \(G, r_0, \ldots, r_n, \) such that every nonzero \(x \in \mathbb{R}^n \) has a negative inner product with at least one of them.

At least when \(G \) is finite this follows from known results (see [6]).

Proof of the Lemma. We will say that a set of vectors \(\{v_0, \ldots, v_m\} \) is almost independent if every proper subset of it is linearly independent but \(\{v_0, \ldots, v_m\} \) is linearly dependent. It is easily checked that \(\{v_0, \ldots, v_m\} \) is almost independent, if, and only if, \(v_1, \ldots, v_m \) are linearly independent and \(v_0 \) is a linear combination of \(v_1, \ldots, v_m \) with nonzero coefficients.

Because of the hypotheses on \(G \) and because \(n \geq 2 \), \(G \) has at least one root, \(r \). \{\(r, -r \)\} is an almost independent set. Suppose \(\{r_0, \ldots, r_m\} \) is the largest almost independent set of roots of \(G \). Let \(U \) be the subspace generated by \(r_0, \ldots, r_m \). We claim that \(U = \mathbb{R}^n \) and therefore \(n = m \). Let \(r \) be a root of \(G \) and suppose that \(U \) is not invariant under \(S_r \). This implies \(r \notin U \) and \(S_r r_i \neq r_i \) for some \(i = 0, 1, \ldots, m \). Assume, without loss of generality, that \(S_r r_0 \neq r_0 \). \(r_0 \) is a linear combination of \(r_1, \ldots, r_m \) with nonzero coefficients. Since \(S_r r_0 - r_0 \) is a nonzero multiple of \(r \), \(S_r r_0 \) is a linear combination of \(r, r_1, \ldots, r_m \) with nonzero coefficients. Because \(r, r_1, \ldots, r_m \) are linearly independent, this means
that the set \(\{S_2, r_0, r, r_1, \ldots, r_m\} \) is almost independent, contradicting the choice of \(\{r_0, \ldots, r_m\} \).

This forces us to conclude that \(U \) is invariant under the reflections generating \(G \), and therefore under every transformation in \(G \). \(G \) acts irreducibly on \(\mathbb{R}^n \) and \(U \neq 0 \). This implies \(U = \mathbb{R}^n \) and \(n = m \).

Because \(\{r_0, \ldots, r_n\} \) is almost independent, it is possible to write

\[
0 = \sum_{i=0}^n a_i r_i
\]

with all coefficients nonzero. We replace some of the roots \(r_i \) by their negatives, to have all the coefficients \(a_i \) positive. If \(x \) is any nonzero vector, we must have \(x \cdot r_i \neq 0 \) for some \(i = 0, 1, \ldots, n \), because the \(r_i \) span \(\mathbb{R}^n \). Since \(0 = x \cdot 0 = \sum_{i=0}^n a_i (x \cdot r_i) \) and \(a_i > 0 \), we must have \(x \cdot r_i < 0 \) for some \(i \).

Proof of Theorem 10. As mentioned in Section 1, \(I(K) \geq n + 1 \) holds for every convex body in \(\mathbb{R}^n \), thus we only need to show that \(I(K) \leq n + 1 \). The Theorem is obviously true when \(n = 1 \), so we assume \(n > 1 \).

Let \(r_0, \ldots, r_n \) be the roots of \(G \) guaranteed by the lemma and let \(x \in \partial K \). First observe that the origin is necessarily an interior point of \(K \) so \(x \neq 0 \). For some \(r_i \), \(x \cdot r_i < 0 \). We claim that this \(r_i \) illuminates \(x \). \(x - 2(x \cdot r_i)r_i = S_{r_i}x \in K \), since \(S_{r_i} \in G \). For some positive \(t \), \(x + tr_i \) is an interior point of \(K \), because \(x \), \(x - 2(x \cdot r_i)r_i \in K \), \(K \) is strictly convex and \(-2(x \cdot r_i) > 0 \). This verifies the claim and we see that \(r_0, \ldots, r_n \) illuminate \(K \).

Remark. A set of constant width is strictly convex; therefore Theorem 10 applies to (sufficiently symmetric) sets of constant width.

References

Dr. O. Schramm, Mathematics Department, Fine Hall, Princeton University, Princeton NJ 08544, USA.

Received on the 15th of February, 1988.
Selected Works of Oded Schramm
Benjamini, I.; Häggström, O. (Eds.)
2011, XLII, 1247 p. 1235 illus., Hardcover