Contents

1. High Frequency Optimisation of an Aerospace Structure Through Sensitivity to SEA Parameters
 A. Culla, Università di Roma 'La Sapienza'; W. D'Ambrogio, Università dell'Aquila; A. Fregolent, Università di Roma 'La Sapienza'

2. Benefit of Acoustic Particle Velocity Based Reverberant Room Testing of Spacecraft
 E.H.G. Tijjs, Microflown Technologies; J.J. Wijker, Dutch Space BV; A. Grillenbeck, IABG mbH

3. Ultrasonic Vibration Modal Analysis Technique (UMAT) for Defect Detection
 J.L. Rose, Pennsylvania State University/FBS, Inc.; F. Yan, FBS, Inc.; C. Borigo, Y. Liang, Pennsylvania State University

4. Acoustic Testing and Response Prediction of the CASSIOPE Spacecraft
 V. Wickramasinghe, A. Grewal, D. Zimcik, National Research Council Canada, Institute for Aerospace Research; A. Woronko, P. Le Rossignol, V-O. Philie, MDA Space Missions; M. O'Grady, R. Singhal, Canadian Space Agency

5. Force Limited Vibration Testing Applied to the JWST FGS OA
 Y. Soucy, Canadian Space Agency; P. Klimas, COM DEV Canada

6. On Force Limited Vibration for Testing Space Hardware
 Y. Soucy, Canadian Space Agency

7. Calculation of Rigid Body Mass Properties of Flexible Structures
 K. Napolitano, M. Schlosser, ATA Engineering, Inc.

8. Simulating Base-shake Environmental Testing
 J. Steedman, NAVCON Engineering Network; B. Schwarz, M. Richardson, Vibrant Technology, Inc.

 T. Lauwagie, E. Dascotte, Dynamic Design Solutions

10. A PZT-based Technique for SHM Using the Coherence Function
 J. Vieira Filho, F.G. Baptista, Sao Paulo State University; D.J. Inman, Virginia Polytechnic Institute and State University

11. The Best Force Design of Pure Modal Test Based Upon a Singular Value Decomposition Approach
 J.M. Liu, Tsinghua University/China Orient Institute of Noise & Vibration; Q.H. Lu, Tsinghua University; H.Q. Ying, China Orient Institute of Noise & Vibration
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Modal Identification and Model Updating of Pleiades</td>
<td>F. Buffe, CNES; N. Roy, TOP MODAL; S. Cogan, FEMTO-ST Institute</td>
</tr>
<tr>
<td>13</td>
<td>Aircraft GVT Advances and Application – Gulfstream G650</td>
<td>R. Brillhart, K. Napolitano, ATA Engineering, Inc.; L. Morgan, R. LeBlanc, Gulfstream Aerospace Corporation</td>
</tr>
<tr>
<td>17</td>
<td>Multiple-site Damage Location Using Single-site Training Data</td>
<td>R.J. Barthorpe, K. Worden, The University of Sheffield</td>
</tr>
<tr>
<td>18</td>
<td>Assessment of Nonlinear System Identification Methods Using the SmallSat Spacecraft Structure</td>
<td>G. Kerschen, University of Lige; L. Soula, J.B. Vergniaud, Astrium Satellites; A. Newerla, European Space Agency (ESTEC)</td>
</tr>
<tr>
<td>20</td>
<td>Advanced Shaker Excitation Signals for Aerospace Testing</td>
<td>B. Peeters, J. Lau, LMS International; A. Carrella, University of Bristol; M. Gatto, G. Coppotelli, Università di Roma “La Sapienza”</td>
</tr>
<tr>
<td>21</td>
<td>System and Method for Compensating Structural Vibrations of an Aircraft Caused by Outside Disturbances</td>
<td>W. Luber, J. Becker, CASSIDIAN - Air Systems</td>
</tr>
<tr>
<td>22</td>
<td>Operational Modal Analysis on a Modified Helicopter</td>
<td>E. Camargo, D. Strafacci, Centro Técnico Aeroespacial; N-J. Jacobsen, Brüel & Kjær Sound & Vibration Measurement A/S</td>
</tr>
<tr>
<td>24</td>
<td>Model Updating With Neural Networks and Genetic Optimization</td>
<td>M.E. Yumer, E. Cigeroglu, H.N. Özgüven, Middle East Technical University</td>
</tr>
<tr>
<td>25</td>
<td>A Piezoelectric Actuated Stabilization Mount for Payloads Onboard Small UAS</td>
<td>K.J. Stuckel, W.H. Semke, University of North Dakota</td>
</tr>
</tbody>
</table>
26 **Extraction of Modal Parameters From Spacecraft Flight Data**
G.H. James, T.T. Cao, V.A. Fogt, R.L. Wilson, NASA Johnson Space Center; T.J. Bartkowicz, The Boeing Company

27 **Dynamic Characterization of Satellite Components Through Non-invasive Methods**
D. Macknelly, Imperial College London; J. Mullins, Vanderbilt University; H. Wiest, Rose-Hulman Institute of Technology; D. Mascarenas, G. Park, Los Alamos National Laboratory

28 **An Inertially Referenced Non-contact Sensor for Ground Vibration Tests**
B. Allen, Moog CSA Engineering; C. Harris, D. Lange, Edwards Flight Test Center

29 **Reliability of Experimental Modal Data Determined on Large Spaceflight Structures**
A. Grillenbeck, S. Dillinger, IABG mbH

30 **Operational Modal Analysis of a Spacecraft Vibration Test**
M. O’Grady, R. Singhal, Canadian Space Agency
Advanced Aerospace Applications, Volume 1
Proulx, T. (Ed.)
2011, IX, 368 p., Hardcover
ISBN: 978-1-4419-9301-4