Contents

1 Networks and Fundamental Concepts .. 1
 1.1 Network Adjacency Matrix .. 1
 1.1.1 Connectivity and Related Concepts 2
 1.1.2 Social Network Analogy: Affection Network 2
 1.2 Analysis Tasks Amenable to Network Methods 3
 1.3 Fundamental Network Concepts 4
 1.3.1 Matrix and Vector Notation 5
 1.3.2 Scaled Connectivity 5
 1.3.3 Scale-Free Topology Fitting Index 6
 1.3.4 Network Heterogeneity 8
 1.3.5 Maximum Adjacency Ratio 8
 1.3.6 Network Density .. 9
 1.3.7 Quantiles of the Adjacency Matrix 10
 1.3.8 Network Centralization 10
 1.3.9 Clustering Coefficient 11
 1.3.10 Hub Node Significance 11
 1.3.11 Network Significance Measure 12
 1.3.12 Centroid Significance and Centroid Conformity 12
 1.3.13 Topological Overlap Measure 13
 1.3.14 Generalized Topological Overlap for Unweighted Networks 14
 1.3.15 Multinode Topological Overlap Measure 16
 1.4 Neighborhood Analysis in PPI Networks 18
 1.4.1 GTOM Analysis of Fly Protein–Protein Interaction Data 18
 1.4.2 MTOM Analysis of Yeast Protein–Protein Interaction Data 20
 1.5 Adjacency Function Based on Topological Overlap 21
 1.6 R Functions for the Topological Overlap Matrix 21
 1.7 Network Modules .. 22
 1.8 Intramodular Network Concepts 24
 1.9 Networks Whose Nodes Are Modules 25
 1.10 Intermodular Network Concepts 26
Contents

1.11 Network Concepts for Comparing Two Networks 27
1.12 R Code for Computing Network Concepts 29
1.13 Exercises ... 30
References ... 32

2 Approximately Factorizable Networks 35
2.1 Exactly Factorizable Networks ... 35
2.2 Conformity for a Non-Factorizable Network 36
2.2.1 Algorithm for Computing the Node Conformity 37
2.3 Module-Based and Conformity-Based Approximation of a Network ... 39
2.4 Exercises ... 42
References ... 43

3 Different Types of Network Concepts 45
3.1 Network Concept Functions .. 46
3.2 CF-Based Network Concepts ... 48
3.3 Approximate CF-Based Network Concepts 49
3.4 Fundamental Network Concepts Versus CF-Based Analogs 50
3.5 CF-Based Concepts Versus Approximate CF-Based Analog 51
3.6 Higher Order Approximations of Fundamental Concepts 52
3.7 Fundamental Concepts Versus Approx. CF-Based Analogs ... 53
3.8 Relationships Among Fundamental Network Concepts 54
3.8.1 Relationships for the Topological Overlap Matrix 55
3.9 Alternative Expression of the Factorizability $F(A)$ 56
3.10 Approximately Factorizable PPI Modules 56
3.11 Studying Block Diagonal Adjacency Matrices 61
3.12 Approximate CF-Based Intermodular Network Concepts 63
3.13 CF-Based Network Concepts for Comparing Two Networks ... 64
3.14 Discussion .. 65
3.15 R Code .. 67
3.16 Exercises .. 69
References ... 74

4 Adjacency Functions and Their Topological Effects 77
4.1 Definition of Important Adjacency Functions 77
4.2 Topological Effects of the Power Transformation AF^{power} 79
4.2.1 Studying the Power AF Using Approx. CF-Based Concepts ... 80
4.2.2 MAR Is a Nonincreasing Function of β 80
4.3 Topological Criteria for Choosing AF Parameters 82
4.4 Differential Network Concepts for Choosing AF Parameters ... 83
4.5 Power AF for Calibrating Weighted Networks 84
4.6 Definition of Threshold-Preserving Adjacency Functions 84
5 Correlation and Gene Co-Expression Networks 91
 5.1 Relating Two Numeric Vectors.. 91
 5.1.1 Pearson Correlation 93
 5.1.2 Robust Alternatives to the Pearson Correlation 94
 5.1.3 Biweight Midcorrelation 95
 5.1.4 C-Index .. 96
 5.2 Weighted and Unweighted Correlation Networks 97
 5.2.1 Social Network Analogy: Affection Network 98
 5.3 General Correlation Networks 99
 5.4 Gene Co-Expression Networks 101
 5.5 Mouse Tissue Gene Expression Data from of an F2 Inter-cross .. 103
 5.6 Overview of Weighted Gene Co-Expression Network Analysis ... 108
 5.7 Brain Cancer Network Application 110
 5.8 R Code for Studying the Effect of Thresholding 112
 5.9 Gene Network (Re-)Construction Methods 114
 5.10 R Code .. 115
 5.11 Exercises .. 117
References ... 118

6 Geometric Interpretation of Correlation Networks
Using the Singular Value Decomposition 123
 6.1 Singular Value Decomposition of a Matrix datX 123
 6.1.1 Signal Balancing Based on Right Singular Vectors 124
 6.1.2 Eigenvectors, Eigengenes, and Left Singular Vectors ... 125
 6.2 Characterizing Approx. Factorizable Correlation Networks 126
 6.3 Eigenvector-Based Network Concepts 129
 6.3.1 Relationships Among Density Concepts
 in Correlation Networks ... 131
 6.4 Eigenvector-Based Approximations of Intermodular Concepts ... 132
 6.5 Networks Whose Nodes are Correlation Modules 134
 6.6 Dictionary for Fundamental-Based and Eigenvector-
 Based Concepts ... 135
 6.7 Geometric Interpretation... 136
 6.7.1 Interpretation of Eigenvector-Based Concepts 136
 6.7.2 Interpretation of a Correlation Network 137
 6.7.3 Interpretation of the Factorizability 138
 6.8 Network Implications of the Geometric Interpretation 139
 6.8.1 Statistical Significance of Network Concepts 140
 6.8.2 Intramodular Hubs Cannot be Intermediate Nodes 140
 6.8.3 Characterizing Networks Where Hub Nodes
 Are Significant ... 140
6.9 Data Analysis Implications of the Geometric Interpretation141
6.10 Brain Cancer Network Application143
6.11 Module and Hub Significance in Men, Mice, and Yeast147
6.12 Summary ..150
6.13 R Code for Simulating Gene Expression Data153
6.14 Exercises ..157
References ..159

7 Constructing Networks from Matrices161
 7.1 Turning a Similarity Matrix into a Network161
 7.2 Turning a Symmetric Matrix into a Network162
 7.3 Turning a General Square Matrix into a Network163
 7.4 Turning a Dissimilarity or Distance into a Network164
 7.5 Networks Based on Distances Between Vectors165
 7.6 Correlation Networks as Distance-Based Networks166
 7.7 Sample Networks for Outlier Detection167
 7.8 KL Dissimilarity Between Positive Definite Matrices169
 7.9 KL Pre-Dissimilarity for Parameter Estimation170
 7.10 Adjacency Function Based on Distance Properties171
 7.11 Constructing Networks from Multiple Similarity Matrices ...172
 7.11.1 Consensus and Preservation Networks173
 7.12 Exercises ..175
References ..178

8 Clustering Procedures and Module Detection179
 8.1 Cluster Object Scatters Versus Network Densities179
 8.2 Partitioning-Around-Medoids Clustering181
 8.3 k-Means Clustering ..182
 8.4 Hierarchical Clustering ..184
 8.5 Cophenetic Distance Based on a Hierarchical Cluster Tree ...186
 8.6 Defining Clusters from a Hierarchical Cluster Tree:
 The Dynamictreecut Library for R188
 8.7 Cluster Quality Statistics Based on Network Concepts192
 8.8 Cross-Tabulation-Based Cluster (Module)
 Preservation Statistics ..193
 8.9 Rand Index and Similarity Measures Between Two Clusterings ...195
 8.9.1 Co-Clustering Formulation of the Rand Index196
 8.9.2 R Code for Cross-Tabulation and Co-Clustering197
 8.10 Discussion of Clustering Methods198
 8.11 Exercises ..200
References ..205

9 Evaluating Whether a Module is Preserved in Another Network ...207
 9.1 Introduction ..207
 9.2 Module Preservation Statistics209
9.2.1 Summarizing Preservation Statistics and Threshold Values212
9.2.2 Module Preservation Statistics for General Networks ...213
9.2.3 Module Preservation Statistics for Correlation Networks ...214
9.2.4 Assessing Significance of Observed Module Preservation Statistics by Permutation Tests ..218
9.2.5 Composite Preservation Statistic Z_{summary} ...218
9.2.6 Composite Preservation Statistic medianRank ...220
9.3 Cholesterol Biosynthesis Module Between Mouse Tissues ..221
9.4 Human Brain Module Preservation in Chimpanzees ...224
9.5 KEGG Pathways Between Human and Chimpanzee Brains ..231
9.6 Simulation Studies of Module Preservation ..233
9.7 Relationships Among Module Preservation Statistics ..239
9.8 Discussion of Module Preservation Statistics ...242
9.9 R Code for Studying the Preservation of Modules ...244
9.10 Exercises ..245
References ..245

10 Association Measures and Statistical Significance Measures ...249
10.1 Different Types of Random Variables ..249
10.2 Permutation Tests for Calculating p Values ..250
10.3 Computing p Values for Correlations ..252
10.4 R Code for Calculating Correlation Test p Values ..254
10.5 Multiple Comparison Correction Procedures for p Values255
10.6 False Discovery Rates and q-values ...258
10.7 R Code for Calculating q-values ...260
10.8 Multiple Comparison Correction as p Value Transformation262
10.9 Alternative Approaches for Dealing with Many p Values265
10.10 R Code for Standard Screening ...266
10.11 When Are Two Variable Screening Methods Equivalent? ..267
10.12 Threshold-Equivalence of Linear Significance Measures ...269
10.13 Network Screening ..271
10.14 General Definition of an Association Network ...272
10.15 Rank-Equivalence and Threshold-Equivalence ...272
10.16 Threshold-Equivalence of Linear Association Networks ...273
10.17 Statistical Criteria for Choosing the Threshold τ ..274
10.18 Exercises ..274
References ..277

11 Structural Equation Models and Directed Networks ...279
11.1 Testing Causal Models Using Likelihood Ratio Tests ..279
11.1.1 Depicting Causal Relationships in a Path Diagram ...280
11.1.2 Path Diagram as Set of Structural Equations ..282
11.1.3 Deriving Model-Based Predictions of Covariances ...283
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.4</td>
<td>Maximum Likelihood Estimates of Model Parameters</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Model Fitting p Value and Likelihood Ratio Tests</td>
</tr>
<tr>
<td>11.1.6</td>
<td>Model Fitting Chi-Square Statistics and LRT</td>
</tr>
<tr>
<td>11.2</td>
<td>R Code for Evaluating an SEM Model</td>
</tr>
<tr>
<td>11.3</td>
<td>Using Causal Anchors for Edge Orienting</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Single Anchor Local Edge Orienting Score</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Multi-Anchor LEO Score</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Thresholds for Local Edge Orienting Scores</td>
</tr>
<tr>
<td>11.4</td>
<td>Weighted Directed Networks Based on LEO Scores</td>
</tr>
<tr>
<td>11.5</td>
<td>Systems Genetic Applications</td>
</tr>
<tr>
<td>11.6</td>
<td>The Network Edge Orienting Method</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Step 1: Combine Quantitative Traits and SNPs</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Step 2: Genetic Marker Selection and Assignment to Traits</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Step 3: Compute Local Edge Orienting Scores for Aggregating the Genetic Evidence in Favor of a Causal Orientation</td>
</tr>
<tr>
<td>11.6.4</td>
<td>Step 4: For Each Edge, Evaluate the Fit of the Underlying Local SEM Models</td>
</tr>
<tr>
<td>11.6.5</td>
<td>Step 5: Robustness Analysis with Respect to SNP Selection Parameters</td>
</tr>
<tr>
<td>11.6.6</td>
<td>Step 6: Repeat the Analysis for the Next A–B Trait–Trait Edge and Apply Edge Score Thresholds to Orient the Network</td>
</tr>
<tr>
<td>11.6.7</td>
<td>NEO Software and Output</td>
</tr>
<tr>
<td>11.6.8</td>
<td>Screening for Genes that Are Reactive to $Insig1$</td>
</tr>
<tr>
<td>11.6.9</td>
<td>Discussion of NEO</td>
</tr>
<tr>
<td>11.7</td>
<td>Correlation Tests of Causal Models</td>
</tr>
<tr>
<td>11.8</td>
<td>R Code for LEO Scores</td>
</tr>
<tr>
<td>11.8.1</td>
<td>R Code for the $LEO.SingleAnchor$ Score</td>
</tr>
<tr>
<td>11.8.2</td>
<td>R Code for the $LEO.CPA$</td>
</tr>
<tr>
<td>11.8.3</td>
<td>R Code for the $LEO.OCA$ Score</td>
</tr>
<tr>
<td>11.9</td>
<td>Exercises</td>
</tr>
<tr>
<td>11.10</td>
<td>References</td>
</tr>
</tbody>
</table>

12 Integrated Weighted Correlation Network Analysis of Mouse Liver Gene Expression Data

12.1 Constructing a Sample Network for Outlier Detection

12.2 Co-Expression Modules in Female Mouse Livers

12.2.1 Choosing the Soft Threshold β Via Scale-Free Topology

12.2.2 Automatic Module Detection Via Dynamic Tree Cutting

12.2.3 Blockwise Module Detection for Large Networks
Contents

14.6 Relationship Between Mutual Information and Correlation387
14.6.1 Applications for Relating MI with Cor.390
14.7 ARACNE Algorithm ...391
14.7.1 Generalizing the ARACNE Algorithm393
14.7.2 Discussion of Mutual Information Networks394
14.7.3 R Packages for Computing Mutual Information395
14.8 Exercises ..396
References ...399

15 Network Based on the Joint Probability Distribution
 of Random Variables ..401
15.1 Association Measures Based on Probability Densities401
15.1.1 Entropy(X) Versus Entropy(Discretize(X))403
15.1.2 Kullback–Leibler Divergence for Assessing
 Model Fit ..405
15.1.3 KL Divergence of Multivariate Normal Distributions ..406
15.1.4 KL Divergence for Estimating Network Parameters ...407
15.2 Partitioning Function for the Joint Probability408
15.3 Discussion ..409
References ...410

Index ..413
Weighted Network Analysis
Applications in Genomics and Systems Biology
Horvath, S.
2011, XXIII, 421 p., Hardcover
ISBN: 978-1-4419-8818-8