Contents

1 Networks and Fundamental Concepts .. 1
 1.1 Network Adjacency Matrix .. 1
 1.1.1 Connectivity and Related Concepts 2
 1.1.2 Social Network Analogy: Affection Network 2
 1.2 Analysis Tasks Amenable to Network Methods 3
 1.3 Fundamental Network Concepts 4
 1.3.1 Matrix and Vector Notation 5
 1.3.2 Scaled Connectivity ... 5
 1.3.3 Scale-Free Topology Fitting Index 6
 1.3.4 Network Heterogeneity 8
 1.3.5 Maximum Adjacency Ratio 8
 1.3.6 Network Density .. 9
 1.3.7 Quantiles of the Adjacency Matrix 10
 1.3.8 Network Centralization 10
 1.3.9 Clustering Coefficient 11
 1.3.10 Hub Node Significance 11
 1.3.11 Network Significance Measure 12
 1.3.12 Centroid Significance and Centroid Conformity 12
 1.3.13 Topological Overlap Measure 13
 1.3.14 Generalized Topological Overlap for
 Unweighted Networks ... 14
 1.3.15 Multinode Topological Overlap Measure 16
 1.4 Neighborhood Analysis in PPI Networks 18
 1.4.1 GTOM Analysis of Fly Protein–Protein
 Interaction Data ... 18
 1.4.2 MTOM Analysis of Yeast Protein–Protein
 Interaction Data ... 20
 1.5 Adjacency Function Based on Topological Overlap 21
 1.6 R Functions for the Topological Overlap Matrix 21
 1.7 Network Modules .. 22
 1.8 Intramodular Network Concepts 24
 1.9 Networks Whose Nodes Are Modules 25
 1.10 Intermodular Network Concepts 26
4.7 Equivalence of Network Construction Methods 86
4.8 Exercises .. 87
References ... 89

5 Correlation and Gene Co-Expression Networks 91
5.1 Relating Two Numeric Vectors 91
5.1.1 Pearson Correlation ... 93
5.1.2 Robust Alternatives to the Pearson Correlation 94
5.1.3 Biweight Midcorrelation 95
5.1.4 C-Index .. 96
5.2 Weighted and Unweighted Correlation Networks 97
5.2.1 Social Network Analogy: Affection Network 98
5.3 General Correlation Networks 99
5.4 Gene Co-Expression Networks101
5.5 Mouse Tissue Gene Expression Data from an F2 Intercross ...103
5.6 Overview of Weighted Gene Co-Expression Network Analysis ...108
5.7 Brain Cancer Network Application110
5.8 R Code for Studying the Effect of Thresholding112
5.9 Gene Network (Re-)Construction Methods114
5.10 R Code ...115
5.11 Exercises ..117
References ...118

6 Geometric Interpretation of Correlation Networks
Using the Singular Value Decomposition123
6.1 Singular Value Decomposition of a Matrix $datX$123
6.1.1 Signal Balancing Based on Right Singular Vectors124
6.1.2 Eigenvectors, Eigengenes, and Left Singular Vectors125
6.2 Characterizing Approx. Factorizable Correlation Networks126
6.3 Eigenvector-Based Network Concepts129
6.3.1 Relationships Among Density Concepts
in Correlation Networks ...131
6.4 Eigenvector-Based Approximations of Intermodular Concepts ...132
6.5 Networks Whose Nodes are Correlation Modules134
6.6 Dictionary for Fundamental-Based and Eigenvector-
Based Concepts ..135
6.7 Geometric Interpretation..136
6.7.1 Interpretation of Eigenvector-Based Concepts136
6.7.2 Interpretation of a Correlation Network137
6.7.3 Interpretation of the Factorizability138
6.8 Network Implications of the Geometric Interpretation139
6.8.1 Statistical Significance of Network Concepts140
6.8.2 Intramodular Hubs Cannot be Intermediate Nodes140
6.8.3 Characterizing Networks Where Hub Nodes
Are Significant ...140
6.9 Data Analysis Implications of the Geometric Interpretation

- Page 141

6.10 Brain Cancer Network Application

- Page 143

6.11 Module and Hub Significance in Men, Mice, and Yeast

- Page 147

6.12 Summary

- Page 150

6.13 R Code for Simulating Gene Expression Data

- Page 153

6.14 Exercises

- Page 157

References

- Page 159

7 Constructing Networks from Matrices

- Page 161

7.1 Turning a Similarity Matrix into a Network

- Page 161

7.2 Turning a Symmetric Matrix into a Network

- Page 162

7.3 Turning a General Square Matrix into a Network

- Page 163

7.4 Turning a Dissimilarity or Distance into a Network

- Page 164

7.5 Networks Based on Distances Between Vectors

- Page 165

7.6 Correlation Networks as Distance-Based Networks

- Page 166

7.7 Sample Networks for Outlier Detection

- Page 167

7.8 KL Dissimilarity Between Positive Definite Matrices

- Page 169

7.9 KL Pre-Dissimilarity for Parameter Estimation

- Page 170

7.10 Adjacency Function Based on Distance Properties

- Page 171

7.11 Constructing Networks from Multiple Similarity Matrices

- Page 172

7.11.1 Consensus and Preservation Networks

- Page 173

7.12 Exercises

- Page 175

References

- Page 178

8 Clustering Procedures and Module Detection

- Page 179

8.1 Cluster Object Scatters Versus Network Densities

- Page 179

8.2 Partitioning-Around-Medoids Clustering

- Page 181

8.3 k-Means Clustering

- Page 182

8.4 Hierarchical Clustering

- Page 184

8.5 Cophenetic Distance Based on a Hierarchical Cluster Tree

- Page 186

8.6 Defining Clusters from a Hierarchical Cluster Tree:
The DynamictreeCUT Library for R

- Page 188

8.7 Cluster Quality Statistics Based on Network Concepts

- Page 192

8.8 Cross-Tabulation-Based Cluster (Module) Preservation Statistics

- Page 193

8.9 Rand Index and Similarity Measures Between Two Clusterings

- Page 195

8.9.1 Co-Clustering Formulation of the Rand Index

- Page 196

8.9.2 R Code for Cross-Tabulation and Co-Clustering

- Page 197

8.10 Discussion of Clustering Methods

- Page 198

8.11 Exercises

- Page 200

References

- Page 205

9 Evaluating Whether a Module is Preserved in Another Network

- Page 207

9.1 Introduction

- Page 207

9.2 Module Preservation Statistics

- Page 209
9.2.1 Summarizing Preservation Statistics and Threshold Values
- Page 212

9.2.2 Module Preservation Statistics for General Networks
- Page 213

9.2.3 Module Preservation Statistics for Correlation Networks
- Page 214

9.2.4 Assessing Significance of Observed Module Preservation Statistics by Permutation Tests
- Page 218

9.2.5 Composite Preservation Statistic Z_{summary}
- Page 218

9.2.6 Composite Preservation Statistic medianRank
- Page 220

9.3 Cholesterol Biosynthesis Module Between Mouse Tissues
- Page 221

9.4 Human Brain Module Preservation in Chimpanzees
- Page 224

9.5 KEGG Pathways Between Human and Chimpanzee Brains
- Page 231

9.6 Simulation Studies of Module Preservation
- Page 233

9.7 Relationships Among Module Preservation Statistics
- Page 239

9.8 Discussion of Module Preservation Statistics
- Page 242

9.9 R Code for Studying the Preservation of Modules
- Page 244

9.10 Exercises
- Page 245

References

10 Association Measures and Statistical Significance Measures
- Page 249

10.1 Different Types of Random Variables
- Page 249

10.2 Permutation Tests for Calculating p Values
- Page 250

10.3 Computing p Values for Correlations
- Page 252

10.4 R Code for Calculating Correlation Test p Values
- Page 254

10.5 Multiple Comparison Correction Procedures for p Values
- Page 255

10.6 False Discovery Rates and q-values
- Page 258

10.7 R Code for Calculating q-values
- Page 260

10.8 Multiple Comparison Correction as p Value Transformation
- Page 262

10.9 Alternative Approaches for Dealing with Many p Values
- Page 265

10.10 R Code for Standard Screening
- Page 266

10.11 When Are Two Variable Screening Methods Equivalent?
- Page 267

10.12 Threshold-Equivalence of Linear Significance Measures
- Page 269

10.13 Network Screening
- Page 271

10.14 General Definition of an Association Network
- Page 272

10.15 Rank-Equivalence and Threshold-Equivalence
- Page 272

10.16 Threshold-Equivalence of Linear Association Networks
- Page 273

10.17 Statistical Criteria for Choosing the Threshold τ
- Page 274

10.18 Exercises
- Page 274

References

11 Structural Equation Models and Directed Networks
- Page 279

11.1 Testing Causal Models Using Likelihood Ratio Tests
- Page 279

11.1.1 Depicting Causal Relationships in a Path Diagram
- Page 280

11.1.2 Path Diagram as Set of Structural Equations
- Page 282

11.1.3 Deriving Model-Based Predictions of Covariances
- Page 283

References
11.1.4 Maximum Likelihood Estimates of Model Parameters...285
11.1.5 Model Fitting p Value and Likelihood Ratio Tests287
11.1.6 Model Fitting Chi-Square Statistics and LRT287

11.2 R Code for Evaluating an SEM Model289

11.3 Using Causal Anchors for Edge Orienting294
11.3.1 Single Anchor Local Edge Orienting Score295
11.3.2 Multi-Anchor LEO Score297
11.3.3 Thresholds for Local Edge Orienting Scores299

11.4 Weighted Directed Networks Based on LEO Scores ...299

11.5 Systems Genetic Applications300

11.6 The Network Edge Orienting Method301
11.6.1 Step 1: Combine Quantitative Traits and SNPs301
11.6.2 Step 2: Genetic Marker Selection and Assignment to Traits ...303
11.6.3 Step 3: Compute Local Edge Orienting Scores for Aggregating the Genetic Evidence in Favor of a Causal Orientation.............................305
11.6.4 Step 4: For Each Edge, Evaluate the Fit of the Underlying Local SEM Models305
11.6.5 Step 5: Robustness Analysis with Respect to SNP Selection Parameters305
11.6.6 Step 6: Repeat the Analysis for the Next A–B Trait–Trait Edge and Apply Edge Score Thresholds to Orient the Network307
11.6.7 NEO Software and Output307
11.6.8 Screening for Genes that Are Reactive to Insig1 ..308
11.6.9 Discussion of NEO308

11.7 Correlation Tests of Causal Models310

11.8 R Code for LEO Scores311
11.8.1 R Code for the LEO.SingleAnchor Score311
11.8.2 R Code for the LEO.CPA313
11.8.3 R Code for the LEO.OCA Score315

11.9 Exercises ...317

References ..318

12 Integrated Weighted Correlation Network Analysis of Mouse Liver Gene Expression Data ...321
12.1 Constructing a Sample Network for Outlier Detection321
12.2 Co-Expression Modules in Female Mouse Livers324
12.2.1 Choosing the Soft Threshold β Via Scale-Free Topology ..324
12.2.2 Automatic Module Detection Via Dynamic Tree Cutting ...326
12.2.3 Blockwise Module Detection for Large Networks327
12.2.4 Manual, Stepwise Module Detection .. 328
12.2.5 Relating Modules to Physiological Traits 330
12.2.6 Output File for Gene Ontology Analysis 333
12.3 Systems Genetic Analysis with NEO ... 334
12.4 Visualizing the Network .. 337
 12.4.1 Connectivity, TOM, and MDS Plots 337
 12.4.2 VisANT Plot and Software ... 339
 12.4.3 Cytoscape and Pajek Software 339
12.5 Module Preservation Between Female and Male Mice 340
12.6 Consensus modules Between Female and Male Liver Tissues 344
 12.6.1 Relating Consensus Modules to the Traits 345
 12.6.2 Manual Consensus Module Analysis 348
12.7 Exercises ... 350
References .. 351

13 Networks Based on Regression Models and Prediction Methods 353
 13.1 Least Squares Regression and MLE 353
 13.2 R Commands for Simple Linear Regression 355
 13.3 Likelihood Ratio Test for Linear Model Fit 356
 13.4 Polynomial and Spline Regression Models 358
 13.5 R Commands for Polynomial Regression and Spline Regression .. 360
 13.6 Conditioning on Additional Covariates 363
 13.7 Generalized Linear Models ... 364
 13.8 Model Fitting Indices and Accuracy Measures 365
 13.9 Networks Based on Predictors and Linear Models 365
 13.10 Partial Correlations and Related Networks 366
 13.11 R Code for Partial Correlations 368
 13.12 Exercises ... 368
References .. 372

14 Networks Between Categorical or Discretized Numeric Variables 373
 14.1 Categorical Variables and Statistical Independence 373
 14.2 Entropy ... 375
 14.2.1 Estimating the Density of a Random Variable 376
 14.2.2 Entropy of a Discretized Continuous Variable 378
 14.3 Association Measures Between Categorical Vectors 379
 14.3.1 Association Measures Expressed in Terms of Counts 381
 14.3.2 R Code for Relating Categorical Variables 381
 14.3.3 Chi-Square Statistic Versus Cor in Case of Binary Variables ... 382
 14.3.4 Conditional Mutual Information 383
 14.4 Relationships Between Networks of Categorical Vectors 384
 14.5 Networks Based on Mutual Information 385
14.6 Relationship Between Mutual Information and Correlation387
14.6.1 Applications for Relating MI with Cor390
14.7 ARACNE Algorithm ...391
14.7.1 Generalizing the ARACNE Algorithm393
14.7.2 Discussion of Mutual Information Networks394
14.7.3 R Packages for Computing Mutual Information395
14.8 Exercises ..396
References ..399

15 Network Based on the Joint Probability Distribution
of Random Variables ..401
15.1 Association Measures Based on Probability Densities401
15.1.1 Entropy(X) Versus Entropy(Discretize(X))403
15.1.2 Kullback–Leibler Divergence for Assessing
 Model Fit ..405
15.1.3 KL Divergence of Multivariate Normal Distributions ...406
15.1.4 KL Divergence for Estimating Network Parameters407
15.2 Partitioning Function for the Joint Probability408
15.3 Discussion ..409
References ..410

Index ...413