Chapter 2

STATISTICAL PROPERTIES OF SOCIAL NETWORKS

Mary McGlohon
School of Computer Science
Carnegie Mellon University
mmcgloho@cs.cmu.edu

Leman Akoglu
School of Computer Science
Carnegie Mellon University
lakoglu@cs.cmu.edu

Christos Faloutsos
School of Computer Science
Carnegie Mellon University
christos@cs.cmu.edu

Abstract
In this chapter we describe patterns that occur in the structure of social networks, represented as graphs. We describe two main classes of properties, static properties, or properties describing the structure of snapshots of graphs; and dynamic properties, properties describing how the structure evolves over time. These properties may be for unweighted or weighted graphs, where weights may represent multi-edges (e.g. multiple phone calls from one person to another), or edge weights (e.g. monetary amounts between a donor and a recipient in a political donation network).

Keywords: Power laws, network structure, weighted graphs

What do social networks look like on a global scale? How do they evolve over time? How do the different components of an entire network form? What
happens when we take into account multiple edges and weighted edges? Can we identify certain patterns regarding these weights?

There has been extensive work focusing on static snapshots of graphs, where fascinating properties have been discovered, the most striking ones being the ‘small-world’ phenomenon [38] (also known as ‘six degrees of separation’ [24]) and the power-law degree distributions [3, 12]. Time-evolving graphs have attracted attention only recently, where even more fascinating properties have been discovered, like shrinking diameters, and the so-called densification power law [18]. Moreover, we find interesting properties in terms of multiple edges between nodes, or edge weights.

In this chapter we will describe some of the most important properties apparent in social networks, with a particular emphasis on dynamic properties, and some of the newer findings with respect to edge weights.

The questions of interest are:

- **What do social networks look like, on a large scale?** Do most nodes have few connections, with several “hubs” or is the distribution more stable? What sort of clustering behavior occurs?
- **How do networks behave over time?** Does the structure vary as the network grows? In what fashion do new entities enter a network? Does the network retain certain graph properties as it grows and evolves? Does the graph undergo a “phase transition”, in which its behavior suddenly changes?
- **How do the non-giant weakly connected components behave over time?** One might argue that they grow, as new nodes are being added; and their size would probably remain a fixed fraction of the size of the GCC. Someone else might counter-argue that they shrink, and they eventually get absorbed into the GCC. What is happening, in real graphs?
- **What distributions and patterns do weighted graphs maintain?** How does the distribution of weights change over time—do we also observe a densification of weights as well as single-edges? How does the distribution of weights relate to the degree distribution? Is the addition of weight bursty over time, or is it uniform?

Answering these questions is important to understand how natural graphs evolve, and to (a) spot anomalous graphs and sub-graphs; (b) answer questions about entities in a network and what-if scenarios; and (c) discard unrealistic graph generators.

Let’s elaborate on each of the above applications: Spotting anomalies is vital for determining abuse of social and computer networks, such as link-spamming in a web graph, fraudulent reputation building in e-auction systems [29], detection of dwindling/abnormal social sub-groups in a social-networking site like Yahoo-360 (360.yahoo.com), Facebook (www.facebook.com) and LinkedIn
Statistical Properties of Social Networks

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Graph representation of datasets</td>
</tr>
<tr>
<td>V</td>
<td>Set of nodes for graph G</td>
</tr>
<tr>
<td>E</td>
<td>Set of edges for graph G</td>
</tr>
<tr>
<td>N</td>
<td>Number of nodes, or $</td>
</tr>
<tr>
<td>E</td>
<td>Number of edges, or $</td>
</tr>
<tr>
<td>$e_{i,j}$</td>
<td>Edge between node i and node j</td>
</tr>
<tr>
<td>$w_{i,j}$</td>
<td>Weight on edge $e_{i,j}$</td>
</tr>
<tr>
<td>w_i</td>
<td>Weight of node i (sum of weights of incident edges)</td>
</tr>
<tr>
<td>A_{0-1}</td>
<td>0-1 Adjacency matrix of the unweighted graph</td>
</tr>
<tr>
<td>A_{w}</td>
<td>Real-value adjacency matrix of the weighted graph</td>
</tr>
<tr>
<td>$a_{i,j}$</td>
<td>Entry in matrix A</td>
</tr>
<tr>
<td>λ_1</td>
<td>Principal eigenvalue of unweighted graph</td>
</tr>
<tr>
<td>$\lambda_{1,w}$</td>
<td>Principal eigenvalue of weighted graph</td>
</tr>
</tbody>
</table>

Table 2.1. Table of Notations.

(www.linkedin.com), and network intrusion detection [17]. Analyzing network properties is also useful for identifying authorities and search algorithms [7, 9, 16], for discovering the “network value” of customers for using viral marketing [30], or to improve recommendation systems [5]. What-if scenarios are vital for extrapolation, provisioning and algorithm design: For example if we expect that the number of links will double within the next year, we should provision for the appropriate hardware to store and process the upcoming queries.

The rest of this chapter will examine both the static and dynamic properties, for weighted and unweighted graphs. However, before delving into these static and dynamic properties, we will next establish some terms and definitions we will use in the rest of the chapter.

1. Preliminaries

We will first provide some basic definitions and terms we will use, and then present some particular data sets we will reference. A full list of symbols can be shown in Table 2.1.

1.1 Definitions

1.1.1 Graphs. We can represent a social network as a graph. For the rest of the chapter we will use network and graph interchangeably.

A static, unweighted graph G consists of a set of nodes V and a set of edges E: $G = (V, E)$. We represent the sizes of V and E as N and E. A graph may be directed or undirected— for instance, a phone call may be from one party to another, and will have a directed edge, or a mutual friendship may be represented as an undirected edge. Most properties we examine will be on undirected graphs.
Graphs may also be \textit{weighted}, where there may be multiple edges occurring between two nodes (e.g. repeated phone calls) or specific edge weights (e.g. monetary amounts for transactions). In a weighted graph \(G \), let \(e_{i,j} \) be the edge between node \(i \) and node \(j \). We shall refer to these two nodes as the \textit{neighboring nodes} or \textit{incident nodes} of edge \(e_{i,j} \). Let \(w_{i,j} \) be the weight on edge \(e_{i,j} \). The \textit{total weight} \(w_i \) of node \(i \) is defined as the sum of weights of all its incident edges, that is \(w_i = \sum_{k=1}^{d_i} w_{i,k} \), where \(d_i \) denotes its degree. As we show later, there is a relation between a given edge weight \(w_{i,j} \) and the weights of its neighboring nodes \(w_i \) and \(w_j \).

Finally, graphs may be \textit{unipartite} or \textit{multipartite}. Most social networks one thinks of are unipartite-- people in a group, papers in a citation network, etc. However, there may also be multipartite-- that is, there are multiple classes of nodes and edges are only drawn between nodes of different classes. Bipartite graphs, like the movie-actor graph of IMDB, consist of disjoint sets of nodes \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \), say, for authors and movies, with no edges among nodes of the same type.

We can represent a graph either visually, or with an \textit{adjacency matrix} \(A \), where nodes are in rows and columns, and numbers in the matrix indicate the existence of edges. For unweighted graphs, all entries are 0 or 1; for weighted graphs the adjacency matrix contains the values of the weights. Figure 2.1 shows examples of graphs and their adjacency matrices.

We next introduce other important concepts we use in analyzing these graphs.

\subsection*{1.1.2 Components.} Another interesting property of a graph is its \textit{component distribution}. We refer to a \textit{connected component} in a graph as a set of nodes and edges where there exists a path between any two nodes in the set. (For directed graphs, this would be a \textit{weakly connected component}, where a \textit{strongly connected component} requires a directed path between any given two nodes in a set.) We find that in real graphs over time, a giant connected component (GCC) forms. However, it is also of interest to study the smaller components-- when do they choose to join the GCC, and what size do they reach before doing so?

In our observations we will focus on the size of the second- and third- largest components. We will also look at the large scale distribution of all component sizes, and how that distribution changes over time. Not surprisingly, components of rank \(\geq 2 \) form a power law.

\subsection*{1.1.3 Diameter and Effective Diameter.} We may want to answer the questions: How does the largest connected component of a real graph evolve over time? Do we start with one large CC, that keeps on growing? We propose to use the \textit{diameter-plot} of the graph, that is, its diameter, over time, to answer these questions. For a given (static) graph, its \textit{diameter} is defined as
Figure 2.1. Illustrations of example graphs. On the left is a unipartite, directed, weighted graph and the corresponding adjacency matrix. On the right is an undirected, bipartite graph and the corresponding adjacency matrix.
the maximum distance between any two nodes, where distance is the minimum number of hops (i.e., edges that must be traversed) on the path from one node to another, ignoring directionality. Calculating graph diameter is \(O(N^2) \). Therefore, we choose to estimate the graph diameter by sampling nodes from the giant component. For \(s = \{1, 2, ..., S\} \), we choose two nodes at random and calculate the distance (using breadth-first search). We then choose to record the 90 percentile value of distances, so we take the .9S largest recorded value. The distance operation is \(O(dk) \), where \(d \) is the graph diameter and \(k \) the maximum degree of any node—on average this is a much smaller cost. Intuitively, the diameter represents how much of a “small world” the graph is—how quickly one can get from one “end” of the graph to another. This is described in [35]. We use sampling to estimate the diameter; alternative methods would include ANF [28].

1.1.4 Heavy-tailed Distributions. While the Gaussian distribution is common in nature, there are many cases where the probability of events far to the right of the mean is significantly higher than in Gaussians. In the Internet, for example, most routers have a very low degree (perhaps “home” routers), while a few routers have extremely high degree (perhaps the “core” routers of the Internet backbone) [12] Heavy-tailed distributions attempt to model this. They are known as “heavy-tailed” because, while traditional exponential distributions have bounded variance (large deviations from the mean become nearly impossible), \(p(x) \) decays polynomially quickly instead of exponentially as \(x \to \infty \), creating a “fat tail” for extreme values on the PDF plot.

One of the more well-known heavy-tailed distributions is the power law distribution. Two variables \(x \) and \(y \) are related by a power law when:

\[
y(x) = Ax^{-\gamma}
\]

where \(A \) and \(\gamma \) are positive constants. The constant \(\gamma \) is often called the power law exponent.

A random variable is distributed according to a power law when the probability density function (pdf) is given by:

\[
p(x) = Ax^{-\gamma}, \quad \gamma > 1, \ x \geq x_{\text{min}}
\]

The extra \(\gamma > 1 \) requirement ensures that \(p(x) \) can be normalized. Power laws with \(\gamma < 1 \) rarely occur in nature, if ever [26]. Skewed distributions, such as power laws, occur very often in real-world graphs, as we will discuss. Figures 2.2(a) and 2.2(b) show two examples of power laws.
While power laws appear in a large number of graphs, deviations from a pure power law are sometimes observed. Two of the more common deviations are exponential cutoffs and lognormals.

Sometimes, the distribution looks like a power law over the lower range of values along the x-axis, but decays very fast for higher values. Often, this decay is exponential, and this is usually called an exponential cutoff:

$$y(x = k) \propto e^{-k/\kappa}k^{-\gamma}$$

where $e^{-k/\kappa}$ is the exponential cutoff term and $k^{-\gamma}$ is the power law term.

Similar distributions were studied by Bi et al. [6], who found that a discrete truncated lognormal (called the Discrete Gaussian Exponential or “DGX” by the authors) gives a very good fit. A lognormal is a distribution whose logarithm is a Gaussian; it looks like a truncated parabola in log-log scales. The DGX distribution has been used to fit the degree distribution of a bipartite “clickstream” graph linking websites and users (Figure 2.2(c)), telecommunications and other data.

Methods for fitting heavy-tailed distributions are described in [26, 10].

1.1.5 Burstiness and Entropy Plots. Human activity, including weight additions in graphs, is often bursty. If that the traffic is self-similar, then we can measure the burstiness, using the intrinsic, or fractal dimension of the cloud of timestamps of edge-additions (or weight-additions). Let $\Delta W(t)$ be the total weight of edges that were added during the t-th interval, e.g., the total network flow on day t, among all the machines we are observing.

Among the many methods that measure self-similarity (Hurst exponent, etc. [31]), we choose the entropy plot [37], which plots the entropy $H(r)$ versus the resolution r. The resolution is the scale, that is, at resolution r, we divide our time interval into 2^r equal sub-intervals, sum the weight-additions
$\Delta W(t)$ in each sub-interval k ($k = 1 \ldots 2^r$), normalize into fractions p_k ($= \Delta W(t)/W_{total}$), and compute the Shannon entropy of the sequence p_k: $H(r) = - \sum_k p_k \log_2 p_k$. If the plot $H(r)$ is linear in some range of resolutions, the corresponding time sequence is said to be fractal in that range, and the slope of the plot is defined as the intrinsic (or fractal) dimension D of the time sequence. Notice that a uniform weight-addition distribution yields $D=1$; a lower value of D corresponds to a more bursty time sequence like a Cantor dust [31], with a single burst having the lowest $D=0$: the intrinsic dimension of a point. Also notice that a variation of the 80-20 model, the so called ‘b-model’ [37], generates such self-similar traffic.

We studied several large real-world weighted graphs described in detail in Table 2.2. In particular, BlogNet contains blog-to-blog links, NetworkTraffic records IP-source/IP-destination pairs, along with the number of packets sent. Bipartite networks Auth-Conf, Keyw-Conf, and Auth-Keyw are from DBLP, representing submission records of authors to conferences with specified keywords. CampaignOrg is from the US FEC, a public record of donations between political candidates and organizations.

For NetworkTraffic and CampaignOrg datasets, the weights on the edges are actual weights representing number of packets and donation amounts. For the remaining datasets, the edge weights are simply the number of occurrences of the edges. For instance, if author i submits a paper to conference j for the first time, the weight $w_{i,j}$ of edge $e_{i,j}$ is set to 1. If author i later submits another paper to the same conference, the edge weight becomes 2.

A complete list of the symbols used throughout text is listed in Table 2.1.

1.2 Data description

We will illustrate some properties described in this chapter on different real-world social networks. These are described in detail in Table 2.2. This includes both bipartite and unipartite, and weighted and unweighted graphs.

Several of our graphs had no obvious weighting scheme: for example, a single paper or patent will cite another only a single time. The graphs that did have weights are also further divided into two schemes, multi-edges and edge-weights. In the edge-weights scheme, there is an obvious weight on edges, such as amounts in campaign donations, or packet-counts in network traffic. For multi-edges, weights are added if there is more than one interaction between two nodes. For instance, if a blog cites another blog at a given time, its weight is 1. If it cites the blog again later, the weight becomes 2.

The datasets are gathered from publicly available data. NIPS1, Arxiv and Patent [19] are academic paper or patent citation graphs with no weighting.

1www.cs.toronto.edu/~roweis/data.html
Table 2.2. The datasets referred to in this chapter.

<table>
<thead>
<tr>
<th>Name</th>
<th>Weights</th>
<th>[N], [E], time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PostNet</td>
<td>Unweighted</td>
<td>250K, 218K, 80 d.</td>
<td>Blog post citation network</td>
</tr>
<tr>
<td>NIPS</td>
<td>Unweighted</td>
<td>2K, 3K, 13 yr.</td>
<td>Paper citation network</td>
</tr>
<tr>
<td>Arxiv</td>
<td>Unweighted</td>
<td>30K, 60K, 13 yr.</td>
<td>Paper citation network</td>
</tr>
<tr>
<td>Patent</td>
<td>Unweighted</td>
<td>4M, 8M, 17 yr.</td>
<td>Patent citation network</td>
</tr>
<tr>
<td>IMDB</td>
<td>Unweighted</td>
<td>757K, 2M, 114 yr.</td>
<td>Bipartite actor-movie network</td>
</tr>
<tr>
<td>Netflix</td>
<td>Unweighted</td>
<td>125K, 14M, 72 mo.</td>
<td>Bipartite user-movie ratings</td>
</tr>
<tr>
<td>BlogNet</td>
<td>Multi-edges</td>
<td>60K, 125K, 80 d.</td>
<td>Social network of blogs based on citations</td>
</tr>
<tr>
<td>Auth-Conf</td>
<td>Multi-edges</td>
<td>17K, 22K, 25 yr.</td>
<td>Bipartite DBLP Author-to-Conference associations</td>
</tr>
<tr>
<td>Key-Conf</td>
<td>Multi-edges</td>
<td>10K, 23K, 25 yr.</td>
<td>Bipartite DBLP Keyword-to-Conference associations</td>
</tr>
<tr>
<td>Auth-Key</td>
<td>Multi-edges</td>
<td>27K, 189K, 25 yr.</td>
<td>Bipartite DBLP Author-to-Keyword associations</td>
</tr>
<tr>
<td>CampOrg</td>
<td>Edge-weights (Amounts)</td>
<td>23K, 877K, 28 yr.</td>
<td>Bipartite U.S. electoral campaign donations from organizations to candidates (available from FEC)</td>
</tr>
<tr>
<td>CampIndiv</td>
<td>Edge-weights (Amounts)</td>
<td>6M, 10M, 22 yr.</td>
<td>Bipartite election donations from individuals to organizations</td>
</tr>
</tbody>
</table>

scheme. IMDB indicates movie-actor information, where an edge occurs if an actor participates in a movie [3]. Netflix is the dataset from the Netflix Prize competition\(^2\), with user-movie links (we ignored the ratings); we also noticed that it only contained users with 100 or more ratings. BlogNet and PostNet are two representations of the same data, hyperlinks between blog posts [21]. In PostNet nodes represent individual posts, while in BlogNet each node represents a blog. Essentially, PostNet is a paper citation network while BlogNet is an author citation network (which contains multi-edges).

Auth-Conf, Key-Conf, and Auth-Key are all from DBLP\(^3\), with the obvious meanings. CampOrg and CampIndiv are bipartite graphs from U.S. Federal Election Commission, recording donation amounts from organizations to political candidates and individuals to organizations\(^4\).

In all the above cases, we assume that edges are never deleted, because edge deletion never explicitly appeared in these datasets.

\(^2\)www.netflixprize.com
\(^3\)dblp.uni-trier.de/xml/
\(^4\)www.cs.cmu.edu/~mmcgloho/fec/data/ fec_data.html
2. Static Properties

We next review static properties of social graphs. While all networks we examine are evolving over time, there are properties that are measured at single points in time, that is, static snapshots of the graphs. For the purposes of organization we will further divide these properties into those applying to unweighted graphs and to weighted graphs.

2.1 Static Unweighted Graphs

Here, we present the ‘laws’ that apply to static snapshots of real graphs without considering the weights on the edges. Those include the patterns in degree distributions, the number of hops pairs of nodes can reach each other, local number of triangles, eigenvalues and communities. Next, we describe the related patterns in more detail.

2.1.1 S-1: Heavy-tailed Degree Distribution. The degree distribution of many real graphs obey a power law of the form $f(d) \propto d^{-\alpha}$, with the exponent $\alpha > 0$, and $f(d)$ being the fraction of nodes with degree d. Such power-law relations as well as many more have been reported in [8, 12, 15, 26]. Intuitively, power-law-like distributions for degrees state that there exist many low degree nodes, whereas only a few high degree nodes in real graphs.

2.1.2 S-2: Small Diameter. One of the most striking patterns that real-world graphs have is a small diameter, which is also known as the ‘small-world phenomenon’ or the ‘six degrees of separation’.

For a given static graph, its diameter is defined as the maximum distance between any two nodes, where distance is the minimum number of hops (i.e., edges that must be traversed) on the path from one node to another, usually ignoring directionality. Intuitively, the diameter represents how much of a “small world” the graph is– how quickly one can get from one “end” of the graph to another.

Many real graphs were found to exhibit surprisingly small diameters– for example, 19 for the Web [2], and the well-known “six-degrees of separation” in social networks [4]. It has also been observed that the diameter spikes at the ‘gelling point’ [22].

Since the diameter is defined as the maximum-length shortest path between all possible pairs, it can easily be highjacked by long chains. Therefore, often the effective diameter is used as a more robust metric, which is the 90-percentile of the pairwise distances among all reachable pairs of nodes. In other words, the effective diameter is the minimum number of hops in which some fraction (usually 90%) of all connected node pairs can be reached [34].
Computing all-pairs-shortest-path lengths is practically intractable for very large graphs. The exact algorithm is prohibitively expensive (at least $O(N^2)$); while one can use sampling to estimate it, alternative methods would include ANF [28].

2.1.3 S-3: Triangle Power Law (TPL). The number of triangles Δ and the number of nodes that participate in Δ number of triangles should follow a power-law in the form of $f(\Delta) \propto \Delta^\sigma$, with the exponent $\sigma < 0$ [36]. The TPL intuitively states that while many nodes have only a few triangles in their neighborhoods, a few nodes participate in many number of triangles with their neighbors. The local number of triangles is related to the clustering coefficient of graphs.

2.1.4 S-4: Eigenvalue Power Law (EPL). Siganos et.al. [33] examined the spectrum of the adjacency matrix of the AS Internet topology and reported that the 20 or so largest eigenvalues of the Internet graph are power-law distributed. Michail and Papadimitriou [23] later provided an explanation for the ‘Eigenvalue Power Law’, showing that it is a consequence of the ‘Degree Power Law’.

2.1.5 S-5: Community Structure. Real-world graphs are found to exhibit a modular structure, with nodes forming groups, and possibly groups within groups [13, 14, 32]. In a modular graph, the nodes form communities where groups of nodes in the same community are tighter connected to each other than to those nodes outside the community. In [27], Newman and Girvan provide a quantitative measure for such a structure, called modularity.

2.2 Static Weighted Graphs

Here we try to find patterns that weighted graphs obey. In this section we consider graphs to be directed (and impose a single direction in bipartite graphs), as this will be an important consideration on the weights. The dataset consist of quadruples: (IP-source, IP-destination, timestamp, number-of-packets), where timestamp is in increments of, say, 30 minutes. Thus, we have multi-edges, as well as total weight for each (source, destination) pair. Let $W(t)$ be the total weight up to time t (ie., the grand total of all exchanged packets across all pairs), $E(t)$ the number of distinct edges up to time t, and $E_d(t)$ the number of multi-edges (the d subscript stands for duplicate edges), up to time t.

We present three “laws” that our datasets seem to follow: The first is the “weight power law” (WPL) correlating the total weight, the total number of edges and the total number of multi-edges, over time. The second is the “edge weights power law”, the same law as applied to individual nodes. The third is
the “snapshot power law” (SPL), correlating the in-degree with the in-weight, and the out-degree with the out-weight, for all the nodes of a graph, at a given time-stamp.

2.2.1 SW-1: Weight Power Law (WPL). As defined above, suppose we have $E(t)$ total unique edges up to time t (ie., count of pairs that know each other) and $W(t)$ being the total count of packets up to time t. Is there a relationship between $W(t)$ and $E(t)$? If every pair generated k packets, the relationships would be linear: if the count of pairs double, the packet count would double, too. This is reasonable, but it doesn’t happen! In reality, the packet count over-doubles, following the “WPL” below. We shall refer to this phenomenon as the “fortification effect”: more edges in the graph imply super-linearly higher total weight.

Observation 2.1 (Weight Power Law (WPL)) Let $E(t)$, $W(t)$ be the number of edges and total weight of a graph, at time t. They, they follow a power law

$$W(t) = E(t)^w$$

where w is the weight exponent. Power-laws also link the number of nodes $N(t)$, and the number of multi-edges $E_d(t)$, to $E(t)$, with exponents n and d_{upE}, respectively.

The weight exponent w ranges from 1.01 to 1.5 for the real graphs we have studied. The highest value corresponds to campaign donations: super-active organizations that support many campaigns also tend to spend even more money per campaign than the less active organizations. For bipartite graphs, we show the n_{src}, n_{dst} exponents for the source and destination nodes (which also follow power laws: $N_{src}(t) = E(t)^{n_{src}}$ and similarly for $N_{dst}(t)$).

Fig. 2.5 shows all these quantities, versus $E(t)$, for several datasets. The plots are all in log-log scales, and straight lines fit well. We report the slopes in Table 2.

2.2.2 SW-2: Edge Weights Power Law. We observe that the weight of a given edge and weights of its neighboring two nodes are correlated. Our observation is similar to Newton’s Gravitational Law stating that the gravitational force between two point masses is proportional to the product of the masses.

Observation 2.2 (Edge Weights Power Law (EWPL)) Given a real-world graph G, ‘communication’ defined as the weight of the link between two given nodes has a power law relation with the weights of the nodes. In particular, given an edge $e_{i,j}$ with weight $w_{i,j}$ and its two neighbor nodes i
and \(j \) with weights \(w_i \) and \(w_j \), respectively,
\[
w_{i,j} \propto \left(\sqrt{(w_i - w_{i,j}) \times (w_j - w_{i,j})} \right)^{\gamma}.
\]
We report corresponding experimental findings in Fig. 3.

2.2.3 SW-3: Snapshot Power Laws (SPL). What about a static snapshot of a graph? If node \(i \) has out-degree \(\text{out}_i \), what can we say about its out-weight \(\text{outw}_i \)? It turns out that there is a “fortification effect” here, too, resulting in more power laws, both for out-degrees/out-weights as well as for in-degrees/in-weights.

Specifically, at a given point in time, we plot the scatterplot of the in/out weight versus the in/out degree, for all the nodes in the graph, at a given time snapshot. An example of such a plot is in Fig. 2.4 (c) and (d). Here, every point represents a node and the \(x \) and \(y \) coordinates are its degree and total weight, respectively. To achieve a good fit, we bucketize the \(x \) axis with logarithmic binning [26], and, for each bin, we compute the median \(y \).

We observed that the median values of weights versus mid-points of the intervals follow a power law for all datasets studied. Formally, the “Snapshot Power Law” is:

Observation 2.3 (Snapshot Power Law (SPL)) Consider the \(i \)-th node of a weighted graph, at time \(t \), and let \(\text{out}_i \), \(\text{outw}_i \) be its out-degree and out-weight. Then
\[
\text{outw}_i \propto \text{out}_i^{ow}
\]
Figure 2.4. Weight properties of CampOrg donations: (a) shows all the power laws as well as the WPL; the slope in (b) is ~ 0.86 indicating bursty weight additions over time; (c) and (d) have slopes > 1 ("fortification effect"), that is, the more campaigns an organization supports, the superlinearly-more money it donates, and similarly, the more donations a candidate gets, the more average amount-per-donation is received. Inset plots on (c) and (d) show iw and ow versus time. Note they are very stable over time.

where ow is the out-weight-exponent of the SPL. Similarly, for the in-degree, with in-weight-exponent iw.

We studied the snapshot plots for several time-stamps (for brevity, we only report the slopes for the final timestamp in Table 2 for all the datasets we studied). We observed that SPL exponents of a graph over time remains almost constant. In Fig. 2.4 (c) ((d)), the inset plot shows how the $iw(ow)$ exponent changes over time (years) for the CampOrg dataset. We notice that iw and ow take values in the range $[0.9-1.2]$ and $[0.95-1.35]$, respectively. That is:

Observation 2.4 (Persistence of Snapshot Power Law) The in- and out-exponents iw and ow of the SPL remain about constant, over time.

Looking at Table 2, we observe that all SPL exponents are > 1, which imply a "fortification effect" with super-linear growth.
Figure 2.5. Properties of weighted networks. Top: weight power laws for CampIndiv(W, E_d, N; vs E). The slopes for weight W and multi-edges E_d are above 1, indicating “fortification”. Bottom: entropy plots for weight addition. Slope away from 1 indicates burstiness (e.g., 0.88 for CampIndiv) The inset plot shows the corresponding time sequence ΔW versus time.
<table>
<thead>
<tr>
<th></th>
<th>(w)</th>
<th>(nsrc)</th>
<th>(ndst)</th>
<th>(\text{dupE})</th>
<th>(\text{iw})</th>
<th>(\text{ow})</th>
<th>(\text{fd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CampOrg</td>
<td>1.53</td>
<td>0.58</td>
<td>0.73</td>
<td>1.29</td>
<td>1.16</td>
<td>1.30</td>
<td>0.86</td>
</tr>
<tr>
<td>CampIndiv</td>
<td>1.36</td>
<td>0.53</td>
<td>0.92</td>
<td>1.14</td>
<td>1.05</td>
<td>1.48</td>
<td>0.87</td>
</tr>
<tr>
<td>BlogNet</td>
<td>1.03</td>
<td>0.79</td>
<td>NA</td>
<td>NA</td>
<td>1.01</td>
<td>1.10</td>
<td>0.96</td>
</tr>
<tr>
<td>Auth-Key</td>
<td>1.01</td>
<td>0.90</td>
<td>0.70</td>
<td>NA</td>
<td>1.01</td>
<td>1.04</td>
<td>0.95</td>
</tr>
<tr>
<td>Auth-Conf</td>
<td>1.08</td>
<td>0.96</td>
<td>0.48</td>
<td>NA</td>
<td>1.04</td>
<td>1.81</td>
<td>0.96</td>
</tr>
<tr>
<td>Key-Conf</td>
<td>1.22</td>
<td>0.85</td>
<td>0.54</td>
<td>1.26</td>
<td>2.14</td>
<td>0.95</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3. Power law exponents for all the weighted datasets we studied: The x-axis being the number of non-duplicate edges \(E \), \(w \): WPL exponent, \(nsrc \), \(ndst \): WPL exponent for source and destination nodes respectively (if the graph is unipartite, then \(nsrc \) is the number of all nodes), \(\text{dupE} \): exponent for multi-edges, \(\text{iw} \), \(\text{ow} \): SPL exponents for indegree and outdegree of nodes, respectively. Exponents above 1 indicate fortification/superlinear growth. Last column, \(\text{fd} \): slope of the entropy plots, or information fractal dimension. Lower \(\text{fd} \) means more burstiness.

3. Dynamic Properties

We next present several dynamic properties. These are typically studied by looking at a series of static snapshots and seeing how measurements of these snapshots compare. Like the static properties we presented previously, we also divide these into properties that take into account weights and those that don’t.

3.1 Dynamic Unweighted Graphs

The patterns in dynamic time-evolving graphs that do not consider edge weights include the shrinking diameter property, the densification law, oscillating around a constant size secondary largest connected components, the largest eigenvalue law and the bursty and self-similar edge additions over time. We next describe these laws in detail.

3.1.1 D-1: Shrinking Diameter. Leskovec. et al. [18] showed that not only is the diameter of real graphs small, but it also shrinks and then stabilizes over time [18]. This pattern can be attributed to the ‘gelling point’ and the ‘densification’ in real graphs both of which are described in the following sections. Briefly, at the ‘gelling point’ many small disconnected components merge and form the largest connected component in the graph. This can be thought as the ‘coalescence’ of the graph at which point the diameter ‘spikes’. Afterwards, with the addition of new edges the diameter keeps shrinking until it reaches an equilibrium.

3.1.2 D-2: Densification Power Law (DPL). Time-evolving graphs follow the ‘Densification Power Law’ with the equation \(E(t) \propto N(t)^\beta \), at all
time ticks t [18], where β is the densification exponent, and $E(t)$ and $N(t)$ are the number of edges and nodes at time t, respectively.

All our real graphs we studied obeyed the DPL, with exponents between 1.03 and 1.7. The power-law exponent being greater than 1 indicates a superlinearity between the number of nodes and the number of edges in real graphs. That is, it indicates that for example when the number of nodes N in a graph doubles, the number of edges E more than doubles—hence the densification. It also explains away the shrinking diameter phenomenon observed in real graphs described earlier. We will attempt to reproduce this property in a generative model later in this chapter.

![Figure 2.6](image)

Figure 2.6. Properties of PostNet network. Notice that we experience an early gelling point at (a) (diameter versus time), stabilization/oscillation of the NLCC sizes in (b) (size of 2nd and 3rd CC, versus time). The vertical line marks the gelling point. Part (c) gives $N(t)$ vs $E(t)$ in log-log scales - the good linear fit agrees with the Densification Power Law. Part (d): component size (in log), vs time - the GCC is included, and it clearly dominates the rest, after the gelling point.

3.1.3 D-3: Diameter-plot and Gelling point. Studying the effective diameter of the graphs, we notice that there is often a point in time when the diameter spikes. Before that point, the graph is more or less in an establishment period, typically consisting of a collection of small, disconnected components. This “gelling point” seems to also be the time where the GCC “takes off”. After the gelling point, the graph obeys the expected rules, such as the den-
sification power law; its diameter decreases or stabilizes; the giant connected component keeps growing, absorbing the vast majority of the newcomer nodes.

Observation 2.5 (Gelling point) *Real graphs exhibit a gelling point, at which the diameter spikes and (several) disconnected components gel into a giant component.*

In most of these graphs, both unipartite and bipartite, there are clear gelling points. For example, in *NIPS* the diameter spikes at $t = 8$ years, which is a reasonable time for an academic community to gel. In some networks, we only see one side of the spike, due to massive network size (*Patent*).

We show full results for *PostNet* in Fig. 2.6, including the diameter plot (Fig. 2.6(a)), sizes of the NLCCs (Fig. 2.6(b)), densification plot (Fig. 2.6(c)), and the sizes of the three largest connected components in log-linear scale, to observe how the GCC dominates the others (Fig. 2.6(d)). Results from other networks are similar, and are shown in condensed form for space (Fig. 2.7 for unipartite graphs, and Fig. 2.8 for bipartite graphs). The left column shows the diameter plots, and the right column shows the NLCCs, which we describe next.

3.1.4 D-4: Constant/Oscillating NLCCs. We particularly studied the second and the third connected component over time. We notice that, after the gelling point, the sizes of these components *oscillate* over time. Further investigation shows that the oscillation may be explained as follows: newcomer nodes typically link to the GCC; very few of the newcomers link to the 2nd (or 3rd) CC, helping them to grow slowly; in very rare cases, a newcomer links both to an NLCC, as well as the GCC, thus leading to the absorption of the NLCC into the GCC. It is exactly at these times that we have a drop in the size of the 2nd CC: Note that edges are not removed, thus, what is reported as the size of the 2nd CC is actually the size of yesterday’s 3rd CC, causing the apparent “oscillation”.

An unexpected (to us, at least) observation is that the largest size these components can get seems to be a constant. This is counter-intuitive – based on random graph theory, we would expect the size of the NLCCs to grow with increasing N. Using scale-free arguments, we would expect the NLCCs to have size that would be a (small, but constant) fraction of the size of the GCC – to our surprise, this *never* happened, on any of the real graphs we tried. If some underlying growth does exist, it was small enough to be impossible to observe throughout the (often lengthy) time in the datasets.

The second columns of Fig. 2.7 and Fig. 2.8 show the NLCC sizes versus time. Notice that, after the “gelling” point (marked with a vertical line), they all oscillate about constant value (different for each network). The only extreme cases are datasets with unusually high connectivity. For example, *Netflix* has
very small NLCCs. This may be explained by the fact the dataset is masked, omitting users with less than a hundred ratings (possibly to further protect the
privacy of the encrypted user-ids). Therefore, the graph has abnormally high connectivity.

Observation 2.6 (Oscillating NLCCs) *After the gelling point, the secondary and tertiary connected components remain of approximately constant size, with small oscillations.*

3.1.5 D-5: LPL: Principal eigenvalue over time.

Plotting the largest (principal) eigenvalue of the 0-1 adjacency matrix A of our datasets over time, we notice that the principal eigenvalue grows following a power law with increasing number of edges. This observation is true especially after the *gelling point*. The ‘gelling point’ is defined to be the point at which a giant connected component (GCC) appears in real-world graphs - after this point, properties such as densification and shrinking diameter become increasingly evident. See [18] for details.

Observation 2.7 (λ_1 Power Law (LPL)) *In real graphs, the principal eigenvalue $\lambda_1(t)$ and the number of edges $E(t)$ over time follow a power law with exponent less than 0.5, especially after the ‘gelling point’. That is, $\lambda_1(t) \propto E(t)^\alpha$, $\alpha \leq 0.5$*

We report the power law exponents in Fig. 2.9. Note that we fit the given lines after the gelling point which is shown by a vertical line for each dataset. Notice that the given slopes are less than 0.5, with the exception of the *Cam-aignOrg* dataset, with slope ≈ 0.53. This result is in agreement with graph theory. See [1] for details.

3.2 Dynamic Weighted Graphs

3.2.1 DW-1: Bursty/self-similar weight additions.

We tracked how much weight a graph puts on at each time interval and looking at the entropy plots, we observed that the weight additions over time show self-similarity. For those weighted graphs where the edge weight is defined as the number of reoccurrences of that edge, the slope of the entropy plot was greater than 0.95, pointing out uniformity. On the other hand, for those graphs where weight is not in terms of multiple edges but some other feature of the dataset such as the amount of donations for the FEC dataset, we observed that weight additions are more bursty, the slope being as low as 0.6 for the Network Traffic dataset. Fig. 2.5 (b) column shows the entropy plots for the weighted datasets we studied. ΔW values over time are also shown in insets at the bottom right corner of each figure.

Observation 2.8 (Bursty/self-similar weight additions) *In all our graphs, the addition of weight ($\Delta W(t)$) was self-similar, with fractal dimension ranging from ≈ 1 (smooth/uniform), down to 0.6 (bursty).*
Figure 2.8. Properties of bipartite networks. Diameter plot (left column), and NLCCs over time (right), with vertical line marking the gelling point. Again, all datasets exhibit an early gelling point, and stabilization of the NLCCs. Netflix has strange behavior because it is masked (see text).
Figure 2.9. Illustration of the LPL. 1st eigenvalue $\lambda_1(t)$ of the 0-1 adjacency matrix A versus number of edges $E(t)$ over time. The vertical lines indicate the gelling point.

(a) Committee - Candidate (b) Blog Network (c) Author - Conference

Figure 2.10. Illustration of the LWPL. 1st eigenvalue $\lambda_{1,w}(t)$ of the weighted adjacency matrix A_w versus number of edges $E(t)$ over time. The vertical lines indicate the gelling point.

(a) Committee - Candidate (b) Blog Network (c) Author - Conference

3.2.2 DW-2: LWPL: Weighted principal eigenvalue over time. Given that unweighted (0-1) graphs follow the λ_1 Power Law, one may ask if there is a corresponding law for weighted graphs. To this end, we also compute the largest eigenvalue $\lambda_{1,w}$ of the weighted adjacency matrix A_w. The entries $w_{i,j}$ of A_w now represent the actual edge weight between node i and j. We notice that $\lambda_{1,w}$ increases with increasing number of edges following a power law with a higher exponent than that of its λ_1 Power Law. We show the experimental results in Fig. 2.10.

Observation 2.9 ($\lambda_{1,w}$ Power Law (LWPL)) Weighted real graphs exhibit a power law for the largest eigenvalue of the weighted adjacency matrix $\lambda_{1,w}(t)$ and the number of edges $E(t)$ over time. That is,

$$\lambda_{1,w}(t) \propto E(t)^\beta$$

In our experiments, the exponent β ranged from 0.5 to 1.6.
4. Conclusion

We believe that the Butterfly model and the observation of constant NLCC’s will shed light upon other research in the area, such as a recent, counter-intuitive discovery [20]: the GCC of several real graphs has no good cuts, so graph partitioning and clustering algorithms cannot help identify communities because no clear communities exist.

We have described the following static patterns:

- **Heavy-tailed degree distribution**, with a few “hubs” and most nodes having few neighbors.
- **Small diameter** and **community structure**— nodes form clusters, and it takes few “hops” to get between any two nodes in the network.

We have also described the following dynamic patterns:

- **Shrinking diameter** and **densification**— the “world gets smaller” as more nodes are added—increasingly more edges are added which causes the diameter to shrink. There is also a **gelling point** at which this occurs.
- **Constant-size smaller components** The large component takes off in size, but the others will not grow beyond a certain point before joining it.
- Several other power laws: **LPL**, or principal eigenvalue over time (both weighted and unweighted), and **bursty weight additions**.

These patterns are helpful to spot anomalous graphs and sub-graphs, and answer questions about entities in a network and what-if scenarios. Let’s elaborate on each of the above applications: Spotting anomalies is vital for determining abuse of social and computer networks, such as link-spamming in a web graph, fraudulent reputation building in e-auction systems [29], detection of dwindling/abnormal social sub-groups in a social-networking site like Yahoo-360 (360.yahoo.com), Facebook (www.facebook.com) and LinkedIn (www.linkedin.com), and network intrusion detection [17]. Analyzing network properties is also useful for identifying authorities and search algorithms [7, 9, 16], for discovering the “network value” of customers for using viral marketing [30], or to improve recommendation systems [5]. What-if scenarios are vital for extrapolation, provisioning and algorithm design: For example if we expect that the number of links will double within the next year, we should provision for the appropriate hardware to store and process the upcoming queries.
References

Social Network Data Analytics
Aggarwal, C.C. (Ed.)
2011, XIV, 502 p., Hardcover
ISBN: 978-1-4419-8461-6