# Contents

1 Introduction .......................................................... 1  
1.1 Statement of the Work .............................................. 1  
1.2 Literature Review .................................................. 2  
  1.2.1 Fault Detection and Isolation (FDI) ............................ 2  
  1.2.2 Network of Unmanned Vehicles ................................. 7  
1.3 Features and Objectives of the Book ............................. 9  
1.4 Outline of the Book ................................................. 10  
1.5 Notation ..................................................................... 11  

2 Geometric Approach to the Problem of Fault Detection and Isolation (FDI) ........................................... 13  
2.1 Structured Fault Detection and Isolation (FDI) ....................... 13  
2.2 Geometric Approach to FDI of Linear Systems ....................... 17  
2.3 Geometric Approach to FDI of Nonlinear Systems ..................... 23  
2.4 Actuator Fault Modes ................................................. 26  

3 FDI in a Network of Unmanned Vehicles: Ideal Communication Channels ......................................................... 29  
3.1 FDI Problem Formulation in a Network of Unmanned Vehicles 29  
  3.1.1 Centralized Architecture ......................................... 31  
  3.1.2 Decentralized Architecture ....................................... 32  
  3.1.3 Semi-decentralized Architecture ................................. 33  
3.2 Proposed Structured Fault Detection and Isolation Scheme ......... 34  
3.3 Actuator Fault Detection and Isolation in a Network of Unmanned Vehicles ....................................................... 41  
  3.3.1 Centralized Architecture ......................................... 41  
  3.3.2 Semi-decentralized Architecture ................................. 43  
  3.3.3 Simulation Results For Formation Flight of Satellites ......... 44  
3.4 Fault Detection and Isolation of an F-18 HARV ........................ 47  
3.5 Fault Detection and Isolation of Redundant Reaction Wheels of a Satellite ...................................................... 51
3.6 Conclusions ............................................ 57

4 A Robust FDI Scheme with a Disturbance Decoupling Property ................................................. 61
4.1 Introduction ........................................... 61
4.2 Hybrid FDI Approach ................................................. 64
  4.2.1 Bank of Continuous-Time Residual Generators .......... 66
  4.2.2 Residual Evaluation Criteria ................................. 70
  4.2.3 DES Fault Diagnoser ........................................... 72
4.3 Hybrid Actuator FDI in a Network of Unmanned Vehicles .... 77
  4.3.1 Simulation Results ........................................... 79
4.4 Hybrid FDI Design for the ALTAV System .................. 83
  4.4.1 The ALTAV System ........................................... 84
  4.4.2 Design of a Hybrid FDI Scheme for the ALTAV System 86
  4.4.3 Simulation Results ........................................... 91
4.5 Conclusions ............................................ 97

5 Compensating for Communication Channels Effects in the FDI Problem ................................................. 99
5.1 Introduction ........................................... 100
5.2 The Packet Erasure Channel Model ......................... 102
5.3 A Network of Unmanned Vehicles: Imperfect Communication Channels ................................................. 104
5.4 Discrete-time Markovian Jump Systems (MJS) .............. 108
  5.4.1 Unobservable and Unobservability Subspaces .......... 109
  5.4.2 A Geometric Approach to Fault Detection and Isolation of Discrete-Time MJS Systems .......... 119
  5.4.3 An $H_\infty$-based Fault Detection and Isolation Design Strategy ........................................... 123
  5.4.4 The FDI Scheme for Formation Flight of Satellites .... 127
5.5 Continuous-time Markovian Jump Systems (MJS) .......... 128
  5.5.1 Unobservable and Unobservability Subspaces .......... 129
  5.5.2 A Geometric Approach to the Fault Detection and Isolation of Continuous-Time MJS Systems .......... 133
  5.5.3 An $H_\infty$-based Fault Detection and Isolation Design Strategy ........................................... 138
  5.5.4 A Case Study ........................................... 142
5.6 Conclusions ............................................ 144

6 Perspectives and Future Directions of Research ............ 149
6.1 Future Research Directions ..................................... 149
  6.1.1 Fault Detection and Isolation of a Network of Unmanned Vehicles: Ideal Communication Channels ... 150
6.1.2 Fault Detection and Isolation of a Network of Unmanned Vehicles Subject to Large Environmental Disturbances

6.1.3 Fault Detection and Isolation of a Network of Unmanned Vehicles with Imperfect Communication Links

References

Index
Fault Detection and Isolation
Multi-Vehicle Unmanned Systems
Meskin, N.; Khorasani, K.
2011, XIX, 166 p., Hardcover