Contents

Part I General Considerations

1 Solvents—Composition of Solutions .. 3
 1.1 Definitions .. 3
 1.2 Molecular Solvents 3
 1.3 Solvation of Solutes in a Molecular Solvent 4
 1.4 Water as Solvent ... 5
 1.4.1 Ability to Give H Bonds 5
 1.4.2 High Value of Its Dipolar Moment 5
 1.4.3 Dissociating Power of Water 7
 1.5 Definition of the Solution Composition 7
 1.6 Quantity of a Substance 7
 1.7 Different Expressions of the Composition 8
 1.7.1 Composition Expressed in Quantity of a Substance:
 The Molar Composition 8
 1.7.2 Molality ... 8
 1.7.3 Molar Fraction 9
 1.8 Calculation of the Molality and the Molarity of a Solution
 from Its Molar Fraction 9

2 Thermodynamics and Equilibrium .. 13
 2.1 Chemical Potential 13
 2.2 Gibbs Free Energy Change ΔG_{syst} and Useful Work
 Available from the Process 16
 2.3 Molar Reaction Gibbs Function 18
 2.4 Evolving Reactions and Equilibrium Conditions 19
 2.5 Equilibrium Conditions and Mass Law 21
 2.6 Chemical Potentials and Standard States 24
 2.7 Redox Reaction: Redox Couples 25
 2.8 Brief Description of an Electrochemical Cell:
 Daniell’s Galvanic Cell 26
2.9 Electromotive Force of a Galvanic Cell, Cell Potential Difference, Maximum Work Available from a Chemical Reaction, and Nernst’s Equation .. 28
2.10 Electrode Potentials ... 30
2.11 Addition of Free Enthalpies and Calculation of Standard Electrode Potentials from Other Standard Electrode Potentials 32

3 Activities and Activity Coefficients .. 37
3.1 Chemical Equilibrium. Mass Law and Species Activities 37
3.2 On the Physical Meaning of An Activity 37
3.3 Ionic Strength of a Solution .. 38
3.4 Link Between Activities and Concentrations: The Activity Coefficients ... 40
3.5 Standard States and Activity Coefficients 40
3.6 Different Ways to Write the Mass Law 41
3.7 Usual Conventions for Activities 42
3.8 Determination of Activities .. 44
3.8.1 Uncharged Solutes ... 44
3.8.2 Activity of An Ion: Activity of the Whole Electrolyte 44
3.9 Calculation of Activity Coefficients and of Activities 44
3.9.1 Activity Calculation of Uncharged Species 44
3.9.2 Calculation of Activity Coefficients and Activities of Ions .. 44
3.10 Justification of Debye-Hückel’s Theory 47

Part II Acids and Bases Equilibria—Analytical Applications

4 Definitions of Acids and Bases: Strength of Acids and Bases 51
4.1 Arrhenius Definition .. 51
4.2 Brønsted–Lowry Definition ... 52
4.3 Inexistence of the Proton in Solution 53
4.4 Brønsted Acidity and Basicity in Water: Nature of the Hydrated Proton in Water .. 54
4.5 Nomenclature .. 55
4.6 About the Equivalence of the Arrhenius and Brønsted Theories in Aqueous Solutions ... 55
4.7 Other Theories of Acids and Bases 57
4.8 Qualitative Considerations Concerning the Strength of Acids and Bases in Water ... 57
4.9 Quantitative Considerations Quantifying the Strengths of Acids and Bases: Dissociation Acid Constants K_a and pK_a 58
4.9.1 Acids’ Strength .. 58
4.9.2 Bases’ Strength .. 60
4.10 Water Dissociation .. 60
4.11 Uselessness of the K_b Notion 61
4.12 A Brief View of the Concept of pH 62
4.13 The Polyacid Case .. 62
4.14 Distribution Diagrams 63
4.15 Macroscopic and Microscopic Equilibrium Constants 66
4.16 Predominant Species Area 68
4.17 Prevision of Acid–Base Reactions: Equilibrium Constant of Acid–Base Reaction 69
4.18 Acidity Scale in Water 70
4.19 Leveling of Acids and Bases in Water 72

5 Calculations of pH Values in Aqueous Solutions 77
5.1 Analytical Concentration 77
5.2 pH of Pure Water ... 78
5.3 Calculation of pH in Solutions of Strong Acids 78
 5.3.1 General Relation 78
 5.3.2 Simplified Equations 79
 5.3.3 Logarithmic Diagram 80
5.4 pH in Solutions of Strong Bases 81
5.5 pH in Solutions of Salts of Strong Acids and Bases 82
5.6 Ostwald’s Dilution Law 82
5.7 pH in Solutions of Weak Acids 83
 5.7.1 General Equation Permitting the pH Calculation 83
 5.7.2 pH Calculations by Approximations 84
 5.7.3 Calculations with Hägg’s Diagrams 86
5.8 pH in a Weak Base Solution 88
 5.8.1 The Base Concentration Is High 88
 5.8.2 The Basic Solution Is Highly Diluted 89
5.9 pH of a Mixture of Strong Acids 91
5.10 pH of a Mixture of Strong Bases 92
5.11 pH of a Mixture of a Strong and a Weak Acid: Ionization Repression .. 92
5.12 pH of a Mixture of a Strong and a Weak Base 93
5.13 pH of an Equimolecular Mixture of a Weak Base and a Weak Acid .. 93
5.14 pH of Polyacid and Polybase Solutions 94
5.15 pH of a Monosalt of a Diacid Solution—pH of an Ampholyte Solution .. 95
5.16 pH of a Solution of an Amino-Acid 96
5.17 pH of a Mixture of Two Weak Acids 100
5.18 pH of a Mixture of a Weak Acid and a Weak Base in Any Proportion: Interest in the Principal Reaction Concept 100
5.19 pH Calculations Taking Activities into Account 104

6 Buffer Solutions ... 107
6.1 pH of a Buffer Solution Before Addition of a Strong Acid or Base .. 107
6.2 pH of a Buffer Solution After a Proton Addition 109
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.2</td>
<td>Justifications</td>
<td>138</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Practical Conclusion: Choice of the Indicator</td>
<td>140</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Titration Error</td>
<td>140</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Titration of a Strong Base with a Strong Acid</td>
<td>141</td>
</tr>
<tr>
<td>9.3.6</td>
<td>Concentration Conditions That Must Be Respected to Obtain Satisfactory Titrations of Strong Acids and Bases</td>
<td>142</td>
</tr>
<tr>
<td>9.4</td>
<td>Neutralization Titration Curve of a Weak Acid with a Strong Base</td>
<td>142</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Shape of the Curve</td>
<td>142</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Justifications</td>
<td>144</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Practical Conclusions: Choice of the Indicator</td>
<td>145</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Titration Error</td>
<td>145</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Conditions That Must be Fulfilled for Satisfactory Titrations</td>
<td>146</td>
</tr>
<tr>
<td>9.5</td>
<td>Titration of a Weak Base with a Strong Acid</td>
<td>146</td>
</tr>
<tr>
<td>9.6</td>
<td>Titration of a Weak Acid with a Weak Base</td>
<td>148</td>
</tr>
<tr>
<td>9.7</td>
<td>Titration of a Mixture of Strong Acids with a Strong Base and Inversely</td>
<td>148</td>
</tr>
<tr>
<td>9.8</td>
<td>Titration of a Mixture of a Strong Acid and a Weak Acid with a Strong Base and Inversely</td>
<td>149</td>
</tr>
<tr>
<td>9.9</td>
<td>Titration of a Mixture of Weak Acids with a Strong Base</td>
<td>150</td>
</tr>
<tr>
<td>9.10</td>
<td>Titration of a Polyacid with a Strong Base</td>
<td>151</td>
</tr>
<tr>
<td>9.11</td>
<td>Titration of the Monosalt of a Diacid</td>
<td>155</td>
</tr>
<tr>
<td>10</td>
<td>Acid–Base Titrations: Further Theoretical Studies</td>
<td>157</td>
</tr>
<tr>
<td>10.1</td>
<td>Exact Equation of the Titration Curve of a Strong Acid with a Strong Base and Conversely; Formula Giving the Titration Error</td>
<td>157</td>
</tr>
<tr>
<td>10.2</td>
<td>Exact Equation of the Titration Curve of a Weak Acid with a Strong Base and Conversely: Titration Error</td>
<td>159</td>
</tr>
<tr>
<td>10.3</td>
<td>Exact Equations of the Titration Curves of Mixtures of Acids, Bases, Polyacids, Polybases, etc.</td>
<td>160</td>
</tr>
<tr>
<td>10.4</td>
<td>Precision of Acid–Base Titrations Related to the Sharpness Index</td>
<td>160</td>
</tr>
<tr>
<td>10.5</td>
<td>Expressions of the Sharpness Index</td>
<td>161</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Titration of a Strong Acid with a Strong Base</td>
<td>162</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Titration of a Weak Acid with a Strong Base</td>
<td>162</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Titration of a Weak Base with a Strong Acid</td>
<td>162</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Titration of a Weak Acid with a Weak Base</td>
<td>162</td>
</tr>
<tr>
<td>10.6</td>
<td>Extent of the Titration Reaction</td>
<td>163</td>
</tr>
<tr>
<td>10.7</td>
<td>Gran’s Diagram</td>
<td>165</td>
</tr>
<tr>
<td>11</td>
<td>Acid–Base Reactions and Chemical Analysis</td>
<td>169</td>
</tr>
<tr>
<td>11.1</td>
<td>The Concept of pH</td>
<td>169</td>
</tr>
<tr>
<td>11.2</td>
<td>Analytical Operations and pH</td>
<td>169</td>
</tr>
<tr>
<td>11.3</td>
<td>Acidity of a Medium as an Index of Its Purity</td>
<td>170</td>
</tr>
</tbody>
</table>
11.4 On the Choice of Examples of Acid–Base Titrations 170
11.5 Direct Titrations of Acid Compounds 171
11.6 Direct Titrations of Derivatives Exhibiting a Basic Character ... 176
11.7 Back Titrations ... 179
11.8 Titrations After a Chemical Reaction (After Transformation) 181

Part III Redox Phenomena and Analytical Applications

12 Generalities on Oxidation-Reduction 193
 12.1 Definitions .. 193
 12.2 Oxidation Numbers ... 197
 12.3 Redox Titrations and Oxidation Numbers 199
 12.4 Particular Cases of Redox Reactions: Disproportionation and
 Retrodisproportionation Reactions 200
 12.5 Equilibration of Redox Reactions 201

13 Redox Reactions and Electrochemical Cells 205
 13.1 Electrochemical Cells and Redox Reactions: Example of
 Daniell’s Galvanic Cell 205
 13.1.1 Galvanic Cell 206
 13.1.2 Electrolytic Cell 207
 13.2 Nature of the Electrical Current in an Electrochemical Cell 208
 13.3 The Hydrated Electron 210
 13.4 Cathode, Anode, and Charges of Electrodes 211
 13.5 Electrochemical Cells and Reversibility 212
 13.6 Classes of Electrodes 213
 13.7 Shorthand Notation for Electrochemical Cells 214
 13.8 Some Examples of Cells 216
 13.9 Electrode Potentials: Nernst’s Law 217
 13.10 Standard Electrode Potentials and Standard Reduction Potentials
 of Some Redox Couples at 298 K 220
 13.11 Zero-Current Electrochemical Cell Potentials—Convention 223
 13.12 Formal Potentials ... 225

14 Predicting Redox Reactions 229
 14.1 Redox Phenomena and Acidity 229
 14.2 Redox Phenomena, Complexation, and Precipitation 233
 14.2.1 The Stabilization of a Redox Couple by Complexation or
 Precipitation of One of Its Members 234
 14.2.2 The Increase or Decrease in the Oxidizing Strength
 of One of Its Ox or Red Forms 235
 14.3 Qualitative Prediction of Redox Reactions After Standard
 Potentials .. 239
14.4 Drawbacks of the Prediction Rule Based on the Sole Consideration of Standard Potentials .. 240
14.5 Quantitative Character of a Redox Reaction 242
14.6 Kinetic Considerations Concerning Redox Reactions 245

15 Predicting Redox Reactions by Graphical Means 247
15.1 Predominance Areas of a Redox Couple 247
15.2 Qualitative Prediction of Redox Reactions from the Knowledge of the Predominance Areas ... 250
15.3 Frost Diagrams ... 253
15.4 E/pH Diagrams or Pourbaix Diagrams 257
15.5 An Example of Application of Pourbaix Diagrams in Analytical Chemistry ... 261
15.6 Extension of Pourbaix Diagrams ... 263

16 Calculating Equilibrium Potentials of Solutions Containing Several Redox Couples ... 265
16.1 Equilibrium Potentials and Electrode Potentials 265
16.2 Potential of a Solution Containing Only One Redox Couple 266
16.3 General Case: Equilibrium Potential of a Solution Containing Two Redox Couples ... 266
16.4 Determining the Ox and Red Concentrations of a Couple from the Known Equilibrium Potential by Graphical Means 269
16.5 A Particular Case: The Exchange of Electrons is Accompanied by an Exchange of Protons or by an Exchange of Ligands 270
16.6 Case in Which One of the Species Redox is Polynuclear 271
16.7 Equilibrium Potential of a Solution When it Contains an Ampholyte ... 272
16.8 Potential of a Solution Containing a Mixture of the Reduced Polyfunctional Member of a Couple and of the Oxidized Member of Another Couple ... 274
16.9 Potential of a Solution Containing a Mixture of an Oxidized Form of a First Couple and of Two Reduced Forms Belonging to Two Other Different Redox Couples 276
16.10 General Considerations Concerning Redox Titrations 277
16.11 Thermodynamic Condition for a Redox Titration Reaction 277
16.12 Kinetic Conditions in Order to Achieve a Satisfactory Redox Titration Reaction ... 278
16.13 Detection of the Equivalence Point of a Redox Titration 279
16.14 General Considerations on Internal Redox Indicators 279
16.15 Some Internal Redox Indicators .. 280
16.15.1 1,10-Phenanthroline ... 280
16.15.2 Diphenylamine .. 282
16.15.3 Methylene Blue .. 283
16.15.4 Diphenylpyrazine ... 283
17 A Study of Some Redox Titration Curves

17.1 Titration of the Ferrous Ion by the Ceric Ion, One of the Simplest Examples of a Redox Titration
- **17.1.1 Common Simplified Theoretical Study**
- **17.1.2 Rigorous Study**

17.2 Further Considerations Concerning Symmetrical Titrations:
- **Titration Error**
 - **17.2.1 Consideration 1**
 - **17.2.2 Consideration 2**
 - **17.2.3 Consideration 3**
 - **17.2.4 Consideration 4**
 - **17.2.5 Consideration 5**
 - **17.2.6 Consideration 6**
 - **17.2.7 Consideration 7**

17.3 Study of the Titration Curve of Stannic Ions by Chromous Ions—Generalization to All Asymmetrical Titrations

17.4 Redox Titrations in Which a Simultaneous Exchange of Electrons and Protons or Other Particles Exists

17.5 Cases in Which the Equivalence Potential Values Depend on the Concentration of One of the Reactants

17.6 Titration of the Hypovanadous Ion by the Permanganate Ion
- **17.6.1 First Equivalence Point**
- **17.6.2 Second Equivalence Point**
- **17.6.3 Third Equivalence Point**

17.7 Titration of a Mixture

18 Oxidoreductimetry: Direct and Indirect Iodometries

18.1 Oxidoreductimetry

18.2 Nomenclature of the Titration Methods Involving the Use of Iodine or the Formation of Iodine

18.3 Some Physicochemical Properties of Iodine

18.4 Predominance Areas of Some Species of Iodine

18.5 Interesting Features Exhibited by the Couple I$_2$/I$^-$ for Its Use in Titrimetry
- **18.5.1 Stability**
- **18.5.2 Coloration**
- **18.5.3 Solubilities**
- **18.5.4 Standard Potential Values of I$_2$/I$^-$ Couples**
- **18.5.5 The Influence of pH**
- **18.5.6 Existence of the Fundamental Reaction of Direct and Indirect Iodometries**
- **18.5.7 Detection of the Equivalence Point**

18.6 The Fundamental Reaction of Iodometries

18.7 Iodine Solutions

18.8 Thiosulfate Solutions
18.9 Examples of Titration by Direct Iodometry

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.9.1</td>
<td>Determination of Sulfurous Acid, Hydrogen Sulfites, and Sulfites</td>
<td>325</td>
</tr>
<tr>
<td>18.9.2</td>
<td>Determination of Hydrogen Sulfide, Hydrogen Sulfides, and Sulfides</td>
<td>326</td>
</tr>
<tr>
<td>18.9.3</td>
<td>Determination of Alkaline Cyanides: Fordos and Gelis’s Method</td>
<td>326</td>
</tr>
<tr>
<td>18.9.4</td>
<td>Determination of Hydrazine and Its Derivatives</td>
<td>327</td>
</tr>
<tr>
<td>18.9.5</td>
<td>Determination of Arsenicals</td>
<td>328</td>
</tr>
<tr>
<td>18.9.6</td>
<td>Determination of Derivatives of Antimony +III</td>
<td>328</td>
</tr>
<tr>
<td>18.9.7</td>
<td>Determination of Stannous Tin</td>
<td>328</td>
</tr>
<tr>
<td>18.9.8</td>
<td>Determination of Mercurious Salts: Extension to the Determination of Mercuric Salts and to That of Reducing Organic Substances</td>
<td>329</td>
</tr>
<tr>
<td>18.9.9</td>
<td>Determination of Thiocyanates</td>
<td>330</td>
</tr>
<tr>
<td>18.9.10</td>
<td>Determination of Thiols</td>
<td>330</td>
</tr>
<tr>
<td>18.9.11</td>
<td>Determination of Xanthogenates and Derivatives: Determination of Hydrazoic Acid and of Azides</td>
<td>331</td>
</tr>
<tr>
<td>18.9.12</td>
<td>Determination of Hydroquinol</td>
<td>332</td>
</tr>
<tr>
<td>18.9.13</td>
<td>Determination of Vitamin C</td>
<td>333</td>
</tr>
</tbody>
</table>

18.10 Examples of Titrations by Indirect Iodometry

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.10.1</td>
<td>Recall of Information</td>
<td>336</td>
</tr>
<tr>
<td>18.10.2</td>
<td>Titration of Nitrous Acid and Nitrites</td>
<td>336</td>
</tr>
<tr>
<td>18.10.3</td>
<td>Determination of Halogens</td>
<td>337</td>
</tr>
<tr>
<td>18.10.4</td>
<td>Determination of Hypochlorites</td>
<td>337</td>
</tr>
<tr>
<td>18.10.5</td>
<td>Determination of Halogens at Oxidation Numbers +III, +V, +VII</td>
<td>340</td>
</tr>
<tr>
<td>18.10.6</td>
<td>Determination of Metallic Salts “at Their Maximum”</td>
<td>340</td>
</tr>
<tr>
<td>18.10.7</td>
<td>Determinations of Arsenic and Antimony at Oxidation State +V</td>
<td>342</td>
</tr>
<tr>
<td>18.10.8</td>
<td>Determination of Hydrogen Peroxide and of Peroxy Salts</td>
<td>343</td>
</tr>
<tr>
<td>18.10.9</td>
<td>Determination of Aqueous Dioxygen by Winkler’s Method</td>
<td>344</td>
</tr>
<tr>
<td>18.10.10</td>
<td>Determination of Peroxides and Hydroperoxides</td>
<td>344</td>
</tr>
<tr>
<td>18.10.11</td>
<td>Determination of Diverse Organic Compounds</td>
<td>344</td>
</tr>
</tbody>
</table>

19 Iodometry in Alkaline Medium, Iodatometry, Periodimetry, and Bromometry

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Iodometry in Alkaline Medium</td>
<td>347</td>
</tr>
<tr>
<td>19.1.1</td>
<td>General Considerations</td>
<td>347</td>
</tr>
<tr>
<td>19.1.2</td>
<td>Applications</td>
<td>351</td>
</tr>
<tr>
<td>19.2</td>
<td>Iodatometry</td>
<td>352</td>
</tr>
<tr>
<td>19.2.1</td>
<td>General Considerations</td>
<td>352</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Applications</td>
<td>355</td>
</tr>
<tr>
<td>19.3</td>
<td>Periodimetry</td>
<td>358</td>
</tr>
</tbody>
</table>
19.4 Bromatometry, Hypobromometry, and Bromometry 366
 19.4.1 General Considerations 366
 19.4.2 Oxidization Reactions 368
 19.4.3 Determinations by Fixing bromine into an Organic
 Substrate Either by Substitution or by Addition 373

20 Oxidizations with Permanganate, Dichromate, and Ceric Ions
 Some Titration Methods Involving a Reduction Reaction 377
 20.1 Oxidization with Permanganate Ions 377
 20.1.1 General Considerations 377
 20.1.2 Applications of Manganimetry in Acidic Medium 382
 20.1.3 Manganimetry in Neutral and Weakly Alkaline Media ... 386
 20.1.4 Manganimetry in Strongly Alkaline Medium 388
 20.1.5 Determination of Organic Matters in Water 389
 20.2 Titrations with Dichromate Ions: Chromimetry 390
 20.2.1 Definition ... 390
 20.2.2 General Considerations 390
 20.2.3 Applications .. 393
 20.3 Titrations with Ceric Ions 394
 20.3.1 Some Properties of Cerous and Ceric Salts 395
 20.3.2 Advantages of Cerimetry 396
 20.3.3 Standardized Solutions 397
 20.3.4 Applications of Cerimetry 398
 20.4 Some Other Oxydoreductimetric Titration Methods 402
 20.4.1 Titrations with Titanium III Salts 402
 20.4.2 Titrations with Chromium II Salts 403
 20.4.3 Titrations with Ascorbic Acid 403

21 Some Applications of Redox Reactions in Qualitative Analysis ... 405
 21.1 Organic Analysis ... 405
 21.1.1 Colorimetric Analysis 405
 21.1.2 Detection in Chromatography 410
 21.1.3 Titration Reactions for Which the Equivalence Point Is
 Detected Through the Occurrence of a Redox Reaction ... 411
 21.1.4 Functional Analysis 412
 21.2 Inorganic Analysis .. 412

Part IV Complexation Reactions—Analytical Applications

22 General Definitions Concerning Complexes Rules of Nomenclature
 and Writing .. 423
 22.1 General Definition of Complexes 423
 22.2 Complexes as Compounds Resulting from the Interaction of
 Electron-Donating and Electron-Accepting Species 424
 22.3 Limits of the Set of Complexes 425
22.4 Writing and Systematic Nomenclature of Complexes 427
22.5 Electrical Charge of an Ion Complex 428

23 Some Elements Concerning the Chemistry of Complexes 429
23.1 Attaining Complexes 429
23.2 Some Ligands Found in Classical Complexes 430
 23.2.1 Some Monodentate Ligands 430
 23.2.2 Some Polydentate Ligands 431
23.3 Some Aspects of the Chemistry of Complexes 433
23.4 State of the Ions in Aqueous Solution and Consequences 436

24 Stability of Complexes: Some Elements Concerning the
 Kinetics of Their Formation 439
24.1 Definition of Complexes in the Context of Analysis 439
24.2 Stability of Complexes: Perfect and Imperfect Complexes 440
24.3 Formation or Stability Constants of Complexes 441
24.4 General Methodology of Determining Stability Constants 442
24.5 Some Examples of Calculations Carried Out with Stability
 Constants .. 444
24.6 Distribution Diagrams 446
24.7 Formation Curve .. 448
24.8 The Complexes as Particle Donors 449
24.9 Factors Influencing the Stability of Complexes 453
24.10 Stability of Chelates: Chelate and Macrocyclic Effects 456
24.11 Kinetics of Complexes’ Formation: Labile and Inert Complexes . 459

25 Superimposition of Varied Equilibria to Complexation Equilibria 461
25.1 Superimposition of Several Complexation Equilibria 461
25.2 An Important Particular Case of Parasitic Reactions:
 Formation of the Complexes Hydroxo, Oxo, and so Forth from
 the Hydrolysis of Metallic Ions 462
 25.2.1 Hydrolysis of Metallic Ions 462
 25.2.2 Competition Between the Hydroxo Complexes and Other
 Ligands .. 464
 25.2.3 Complexation—Precipitation Interaction: Formation
 of Insoluble Oxides and Hydroxides 468
25.3 Formation of Polynuclear Complexes; Polymerization 476
25.4 Ability of Ligands to Complex Metallic Ions and Acidity
 of Solution ... 480

26 Conditional Stability Constants 485
26.1 Species Existing in Solution When a Metallic Ion Is Titrated
 with EDTA .. 485
26.2 Conditional Constants, Parasitic Reaction Coefficients,
 and Apparent Concentrations 486
26.3 Examples of Conditional Constants’ Calculations 489
26.4 Quantitative Changes in Coefficients α 491
26.5 Conditional Constants, Masking, and Selective Complexations in the Presence of Several Metallic Ions 493
26.6 Conditional Constants and Calculation of the Concentrations of the Different Species in Solution 494
26.7 Case of Metal Indicators .. 497
26.8 Extension of the Concept of Conditional Stability Constants 499
26.9 About the Interest in the Concept of Conditional Constants 500

27 Complexometry I: Mercurimetry (Votocek–Dubsky’s Method) 503
27.1 The Major Difficulty Encountered During Complexometric Titrations .. 503
27.2 Mercurimetry: Votocek–Dubsky’s Method 505
27.2.1 Principle .. 506
27.2.2 Equivalence Point 507
27.2.3 Standard Solutions 510
27.2.4 Applications .. 511

28 Complexometry II: Titrations with EDTA 513
28.1 Some Properties of EDTA 513
28.1.1 Acid Dissociation Constants of EDTA 514
28.1.2 EDTA: A Very Powerful Chelating Agent 515
28.1.3 Formation Reactions of Metal–EDTA Chelates 516
28.2 Direct Titration Curve of a Metallic Ion with EDTA 517

29 Complexometry III: Metal Cation Indicators and Types of EDTA Titrations .. 525
29.1 Some Metal Ion Indicators 525
29.1.1 Azo Derivatives Possessing a Phenol Function 525
29.1.2 Triphenylmethane Derivatives 527
29.1.3 Derivatives of Miscellaneous Structures 529
29.2 Types of EDTA Titrations 530
29.2.1 Direct Titrations 530
29.2.2 Back Titrations 531
29.2.3 Titrations with Indirect Metal Indicators 532
29.2.4 Replacement or Substitution Titrations 533
29.2.5 Alkalimetric Titrations 534
29.2.6 Sequential Titrations of Mixtures, Selectivity, Masking, and Demasking .. 535
29.3 Determination of Anions with EDTA 539
29.4 Other Complexones 540

30 Applications of the Formation of Complexes in Inorganic Analysis 543
30.1 Qualitative Inorganic Analysis 543
30.1.1 Cations’ Characterization 544
30.1.2 Anions’ Characterization 563
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.2</td>
<td>Quantitative Inorganic Analysis</td>
<td>568</td>
</tr>
<tr>
<td>30.2.1</td>
<td>Titration of Ca$^{2+}$</td>
<td>568</td>
</tr>
<tr>
<td>30.2.2</td>
<td>Titration of Mg$^{2+}$</td>
<td>569</td>
</tr>
<tr>
<td>30.2.3</td>
<td>Titration of Lead</td>
<td>570</td>
</tr>
<tr>
<td>30.2.4</td>
<td>Titration of Bismuth</td>
<td>570</td>
</tr>
<tr>
<td>30.2.5</td>
<td>Titration of Aluminum</td>
<td>571</td>
</tr>
<tr>
<td>30.2.6</td>
<td>Miscellaneous Titrations</td>
<td>571</td>
</tr>
</tbody>
</table>

Part V Precipitation Phenomena—Analytical Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Applications of the Formation of Complexes in Organic Analysis</td>
<td>575</td>
</tr>
<tr>
<td>31.1</td>
<td>Formation of Complexes with Fe$^{3+}$ and Fe$^{2+}$</td>
<td>575</td>
</tr>
<tr>
<td>31.2</td>
<td>Formation of Complexes with Cu$^{2+}$</td>
<td>590</td>
</tr>
<tr>
<td>31.3</td>
<td>Formation of Complexes with Ag$^{+}$</td>
<td>597</td>
</tr>
<tr>
<td>31.4</td>
<td>Formation of Complexes with Co$^{2+}$</td>
<td>599</td>
</tr>
<tr>
<td>31.5</td>
<td>Formation of Complexes with Hg$^{2+}$</td>
<td>601</td>
</tr>
<tr>
<td>31.6</td>
<td>Formation of Miscellaneous Complexes and Analytical Applications</td>
<td>603</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Intrinsic, Ionic, and Total Solubilities; Solubility Product and Precipitation</td>
<td>609</td>
</tr>
<tr>
<td>32.1</td>
<td>Solubility Product and Intrinsic Solubility</td>
<td>609</td>
</tr>
<tr>
<td>32.2</td>
<td>Generalization of the Concept of Solubility Product</td>
<td>610</td>
</tr>
<tr>
<td>32.3</td>
<td>Thermodynamic Justification of the Concept of Solubility Product</td>
<td>612</td>
</tr>
<tr>
<td>32.4</td>
<td>Intrinsic Solubility, Total Solubility, and Ionic Product</td>
<td>613</td>
</tr>
<tr>
<td>32.5</td>
<td>Difficulties Encountered in the Calculations of Solubilities</td>
<td>617</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Dependence of the Solubility on the Solution’s Ionic Strength and on the Presence of Common Ions: Superimposition of Several Precipitation Equilibria</td>
<td>619</td>
</tr>
<tr>
<td>33.1</td>
<td>Influence of the Ionic Strength on the Solubility</td>
<td>619</td>
</tr>
<tr>
<td>33.2</td>
<td>The Common Ion Effect</td>
<td>622</td>
</tr>
<tr>
<td>33.3</td>
<td>Superimposition of Two Precipitation Equilibria: Separation by Precipitation</td>
<td>628</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Solubility and pH</td>
<td>633</td>
</tr>
<tr>
<td>34.1</td>
<td>Solubility of Acidic and Basic Solutes as a Function of pH</td>
<td>633</td>
</tr>
<tr>
<td>34.1.1</td>
<td>The Monoacid or Monobasic Case</td>
<td>633</td>
</tr>
<tr>
<td>34.1.2</td>
<td>The Diacid or Dibase Case</td>
<td>636</td>
</tr>
<tr>
<td>34.1.3</td>
<td>The Ampholyte Case</td>
<td>637</td>
</tr>
<tr>
<td>34.2</td>
<td>Solubility of Poorly Soluble Salts as a Function of pH</td>
<td>639</td>
</tr>
<tr>
<td>34.2.1</td>
<td>Qualitative Aspect</td>
<td>639</td>
</tr>
<tr>
<td>34.2.2</td>
<td>Acid–Base Equilibria and Precipitation in a Buffered Medium: Quantitative Aspect</td>
<td>640</td>
</tr>
<tr>
<td>34.2.3</td>
<td>Solubility of Poorly Soluble Salts in Unbuffered Media</td>
<td>642</td>
</tr>
</tbody>
</table>
34.3 Fractional Precipitation of Ions as a Function of the Solution’s pH Value ... 648
34.3.1 Qualitative Aspects ... 648
34.3.2 Fractional Precipitation of Metallic Ions as Sulfides 649
34.3.3 Fractional Precipitation of Metallic Ions as Hydroxides 654
34.3.4 Fractional Precipitation of Metallic Ions as Oxinates 656

35 Precipitation and Complexation 659
35.1 Dissolution of a Precipitate by Complexation of the Metal Cation Constituting it: Generalities 659
35.2 Dissolution of a Precipitate by Complexation: Quantitative Aspects ... 660
35.3 Dissolution of a Precipitate by Complexation:
Further Calculations ... 662
35.3.1 Dissolution of Silver Bromide with a Sodium Thiosulfate Solution .. 663
35.3.2 Dissolution of a Precipitate with an Excess of Precipitating Reagent 664
35.3.3 Precipitation of Metallic Sulfides 668
35.4 Destruction of a Complex by Formation of a Precipitate 672
35.5 Separation by Complexation and Precipitation 676

36 Theoretical Study of Some Precipitation Titration Curves 679
36.1 Case of a Symmetric Titration: Titration of A Halide by Silver Ions and Inversely 679
36.1.1 Titration Reaction ... 679
36.1.2 General Equation of the Titration Curve 680
36.1.3 Shape of the Titration Curve 682
36.1.4 Simplified Equations of the Titration Curve 682
36.1.5 Titration Error ... 683
36.1.6 Inflection Point of the Titration Curve 684
36.1.7 Inverse Titration ... 685
36.2 Dissymmetric Titrations 686

37 Titrimetric Methods Involving a Precipitation 689
37.1 Argentometry .. 689
37.1.1 Definitions .. 689
37.1.2 Generalities ... 689
37.2 Argentometry in Acidic Medium: Charpentier–Volhard’s Method .. 690
37.2.1 Principle .. 690
37.2.2 Theoretical Justification of the Method 690
37.2.3 Conditions in Which the Titration Must Be Carried Out .. 691
37.2.4 Titration Error .. 692
37.3 Argentometry in Neutral or Weakly Alkaline Medium: Mohr’s Method ... 693
37.3.1 Principle .. 693
37.3.2 Mechanism of the Endpoint Indication: Titration Error 694
37.3.3 pH Conditions ... 695
37.3.4 Applications .. 696
37.4 Argentometry in Weakly Acidic or Neutral Medium: Fajans’ Method 696
37.4.1 Principle .. 696
37.4.2 Indication Mechanism .. 696
37.4.3 Experimental Conditions .. 697
37.5 Liebig–Denigés’ Method .. 697
37.5.1 Definitions ... 697
37.5.2 Principle of Liebig’s Method ... 698
37.5.3 Equations of the Titration Curve ... 698
37.5.4 Titration Error ... 700
37.5.5 Drawback to Liebig’s Method .. 700
37.5.6 Denigés’ Modification ... 700
37.5.7 Applications and Extensions of Liebig–Denigés’ Method .. 702
37.5.8 Standard Solutions .. 702
37.6 Some Other Precipitation Methods ... 703
38 Gravimetry by Precipitation ... 705
38.1 Principle and Some Definitions ... 705
38.2 Conditions for the Success of a Gravimetry by Precipitation Determination 706
38.3 Insolubility of the Precipitate in the Medium .. 707
38.4 Composition of the Precipitate; Impurities of the Precipitate 708
38.4.1 Impurities by Coprecipitation ... 708
38.4.2 Impurities by a Lack of Selectivity of the Precipitation Reaction 710
38.5 Obtaining a Suitable Precipitate ... 712
38.5.1 Purity of Precipitates and Size of Particles ... 712
38.5.2 Size of Particles .. 712
38.6 Precipitation from Homogeneous Solution .. 714
38.7 The Gravimetric Factor .. 716
38.8 Sensitivity of Gravimetry ... 718
38.9 Some Experimental Details .. 719
38.9.1 Quantitative Filtration ... 719
38.9.2 Drying of Precipitates ... 719
38.9.3 Precision Balances .. 719
38.9.4 Thermobalances ... 719
38.10 Some Characteristics of Gravimetry by Precipitation ... 720
39 Some Applications of the Precipitation Phenomenon in Inorganic and Organic Qualitative and Quantitative Analysis 721
 39.1 Titrations Involving the Precipitation of Insoluble Silver Salts . 721
 39.1.1 Determination of Organic Halogens 721
 39.1.2 Determination of Hydrochlorides, Hydrobromides, and Hydroiodides ... 723
 39.1.3 Some Examples .. 723
 39.1.4 Zeisel’s Method: Determination of Methoxy and Ethoxy Groups ... 726
 39.1.5 Prototropic Titrations in the Presence of Silver Ions 727
 39.2 Other Titrimetric Methods Involving a Precipitation Phenomenon ... 729
 39.3 Gravimetry .. 731
 39.3.1 Gravimetric Assays Involving Ignition 732
 39.3.2 Gravimetric Assays Involving a Prior Solvent Extraction ... 732
 39.3.3 Assay Involving Solvent Extraction and Drying to Constant Weight ... 733
 39.3.4 Gravimetric Determinations Involving the Formation of a Precipitate that Is Weighed 733
 39.4 Determination of Inorganic Ions After Precipitation with Organic Precipitants ... 734
 39.5 Qualitative Organic Analysis .. 736
 39.6 Inorganic Qualitative Analysis ... 740

Appendix A The Chain Rule or Differentiating a Function of a Function ... 743

Appendix B Sharpness Index for the Titration of a Strong Acid with a Strong Base ... 745

Appendix C Sharpness Index for the Titration of a Weak Acid with a Strong Base and Conversely .. 747

Appendix D Sharpness Index for the Titration of a Weak Acid with a Weak Base .. 749

Appendix E Finding an Approximate Expression of the Fraction α of the Added Titrant That Has Reacted 751

Appendix F A Study of Liebig–Denigés’s Titration Curves 753

Bibliography ... 763

Index ... 765
Ionic Equilibria in Analytical Chemistry
Burgot, J.-L.
2012, XXIV, 772 p., Hardcover
ISBN: 978-1-4419-8381-7