Contents

Part I General Considerations

1 Solvents—Composition of Solutions .. 3
 1.1 Definitions ... 3
 1.2 Molecular Solvents ... 3
 1.3 Solvation of Solutes in a Molecular Solvent 4
 1.4 Water as Solvent ... 5
 1.4.1 Ability to Give H Bonds .. 5
 1.4.2 High Value of Its Dipolar Moment 5
 1.4.3 Dissociating Power of Water .. 7
 1.5 Definition of the Solution Composition 7
 1.6 Quantity of a Substance ... 7
 1.7 Different Expressions of the Composition 8
 1.7.1 Composition Expressed in Quantity of a Substance:
 The Molar Composition .. 8
 1.7.2 Molality ... 8
 1.7.3 Molar Fraction ... 9
 1.8 Calculation of the Molality and the Molarity of a Solution
 from Its Molar Fraction .. 9

2 Thermodynamics and Equilibrium .. 13
 2.1 Chemical Potential ... 13
 2.2 Gibbs Free Energy Change ΔG_{syst} and Useful Work
 Available from the Process .. 16
 2.3 Molar Reaction Gibbs Function ... 18
 2.4 Evolving Reactions and Equilibrium Conditions 19
 2.5 Equilibrium Conditions and Mass Law 21
 2.6 Chemical Potentials and Standard States 24
 2.7 Redox Reaction: Redox Couples .. 25
 2.8 Brief Description of an Electrochemical Cell:
 Daniell’s Galvanic Cell .. 26
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.13 The Polyacid Case</td>
<td>62</td>
</tr>
<tr>
<td>4.14 Distribution Diagrams</td>
<td>63</td>
</tr>
<tr>
<td>4.15 Macroscopic and Microscopic Equilibrium Constants</td>
<td>66</td>
</tr>
<tr>
<td>4.16 Predominant Species Area</td>
<td>68</td>
</tr>
<tr>
<td>4.17 Prevision of Acid–Base Reactions: Equilibrium Constant</td>
<td>69</td>
</tr>
<tr>
<td>of Acid–Base Reaction</td>
<td></td>
</tr>
<tr>
<td>4.18 Acidity Scale in Water</td>
<td>70</td>
</tr>
<tr>
<td>4.19 Leveling of Acids and Bases in Water</td>
<td>72</td>
</tr>
<tr>
<td>5 Calculations of pH Values in Aqueous Solutions</td>
<td>77</td>
</tr>
<tr>
<td>5.1 Analytical Concentration</td>
<td>77</td>
</tr>
<tr>
<td>5.2 pH of Pure Water</td>
<td>78</td>
</tr>
<tr>
<td>5.3 Calculation of pH in Solutions of Strong Acids</td>
<td>78</td>
</tr>
<tr>
<td>5.3.1 General Relation</td>
<td>78</td>
</tr>
<tr>
<td>5.3.2 Simplified Equations</td>
<td>79</td>
</tr>
<tr>
<td>5.3.3 Logarithmic Diagram</td>
<td>80</td>
</tr>
<tr>
<td>5.4 pH in Solutions of Strong Bases</td>
<td>81</td>
</tr>
<tr>
<td>5.5 pH in Solutions of Salts of Strong Acids and Bases</td>
<td>82</td>
</tr>
<tr>
<td>5.6 Ostwald’s Dilution Law</td>
<td>82</td>
</tr>
<tr>
<td>5.7 pH in Solutions of Weak Acids</td>
<td>83</td>
</tr>
<tr>
<td>5.7.1 General Equation Permitting the pH Calculation</td>
<td>83</td>
</tr>
<tr>
<td>5.7.2 pH Calculations by Approximations</td>
<td>84</td>
</tr>
<tr>
<td>5.7.3 Calculations with Hägg’s Diagrams</td>
<td>86</td>
</tr>
<tr>
<td>5.8 pH in a Weak Base Solution</td>
<td>88</td>
</tr>
<tr>
<td>5.8.1 The Base Concentration Is High</td>
<td>88</td>
</tr>
<tr>
<td>5.8.2 The Basic Solution Is Highly Diluted</td>
<td>89</td>
</tr>
<tr>
<td>5.9 pH of a Mixture of Strong Acids</td>
<td>91</td>
</tr>
<tr>
<td>5.10 pH of a Mixture of Strong Bases</td>
<td>92</td>
</tr>
<tr>
<td>5.11 pH of a Mixture of a Strong and a Weak Acid: Ionization Repression</td>
<td>92</td>
</tr>
<tr>
<td>5.12 pH of a Mixture of a Strong and a Weak Base</td>
<td>93</td>
</tr>
<tr>
<td>5.13 pH of an Equimolecular Mixture of a Weak Base and a Weak Acid</td>
<td>93</td>
</tr>
<tr>
<td>5.14 pH of Polyacid and Polybase Solutions</td>
<td>94</td>
</tr>
<tr>
<td>5.15 pH of a Monosalt of a Diacid Solution—pH of an Ampholyte Solution</td>
<td>95</td>
</tr>
<tr>
<td>5.16 pH of a Solution of an Amino-Acid</td>
<td>96</td>
</tr>
<tr>
<td>5.17 pH of a Mixture of Two Weak Acids</td>
<td>100</td>
</tr>
<tr>
<td>5.18 pH of a Mixture of a Weak Acid and a Weak Base in Any Proportion:</td>
<td>100</td>
</tr>
<tr>
<td>Interest in the Principal Reaction Concept</td>
<td></td>
</tr>
<tr>
<td>5.19 pH Calculations Taking Activities into Account</td>
<td>104</td>
</tr>
<tr>
<td>6 Buffer Solutions</td>
<td>107</td>
</tr>
<tr>
<td>6.1 pH of a Buffer Solution Before Addition of a Strong Acid or Base</td>
<td>107</td>
</tr>
<tr>
<td>6.2 pH of a Buffer Solution After a Proton Addition</td>
<td>109</td>
</tr>
</tbody>
</table>
6.3 Mechanism of the Buffer Effect .. 110
 6.3.1 Chemical Standpoint .. 110
 6.3.2 Mathematical Standpoint 110
6.4 Buffer Capacity—Buffer Index 111
6.5 Mathematical Expression of the Buffer Index 111
6.6 Buffer Range .. 113
6.7 Mixtures of Several Buffers 114
6.8 Buffer Capacity of a Polyacid 115
6.9 Some Buffers .. 116

7 Some General Points Concerning Titrations 119
 7.1 General Principle of Titrimetric Methods 119
 7.2 Terminology .. 120
 7.3 Titration Error .. 120
 7.4 Equivalents and Normal Solutions 121
 7.5 Some Titration Forms 122
 7.6 Types of Chemical Reactions Used in Titrations and Titration
 Designations .. 123
 7.7 Conditions That the Titrination Reaction Must Fulfill 123
 7.8 Glassware Used in Titrimetry 125
 7.9 Titrations and Microinformatics: Current Trends 125

8 Neutralization or Acid-Base Indicators 127
 8.1 General Considerations on Neutralization Indicators 127
 8.2 Origin of the Color Change 128
 8.3 Categories of Neutralization Indicators 130
 8.4 Some Indicators ... 130
 8.5 Conditions for Use of Color Indicators 131
 8.5.1 Color-Change Interval 131
 8.5.2 Influence of the Indicator Concentration
 on the Color-Change Interval 132
 8.5.3 pH Change of the Solution Under Study by Addition
 of the Indicator ... 132
 8.5.4 Ionic Strength of the Solution 133
 8.5.5 Nature of the Other Substances Present in Solution 134
 8.5.6 Temperature ... 134
 8.6 Uses of Neutralization Indicators 134

9 Acid–Base Titration Curves ... 135
 9.1 Terminology of Acid–Base Titrations 135
 9.2 General Considerations Concerning Acid–Base Titration Curves:
 Fraction Titrated ... 135
 9.3 Neutralization of a Strong Acid with a Strong Base
 and Vice Versa .. 136
 9.3.1 Shape of the Titration Curve 136
9.3.2 Justifications .. 138
9.3.3 Practical Conclusion: Choice of the Indicator 140
9.3.4 Titration Error 140
9.3.5 Titration of a Strong Base with a Strong Acid 141
9.3.6 Concentration Conditions That Must Be Respected to Obtain Satisfactory Titrations of Strong Acids and Bases ... 142

9.4 Neutralization Titration Curve of a Weak Acid with a Strong Base .. 142
9.4.1 Shape of the Curve 142
9.4.2 Justifications .. 144
9.4.3 Practical Conclusions: Choice of the Indicator 145
9.4.4 Titration Error 145
9.4.5 Conditions That Must be Fulfilled for Satisfactory Titrations ... 146

9.5 Titration of a Weak Base with a Strong Acid 142
9.6 Titration of a Weak Acid with a Weak Base 148
9.7 Titration of a Mixture of Strong Acids with a Strong Base and Inversely .. 148
9.8 Titration of a Mixture of a Strong Acid and a Weak Acid with a Strong Base and Inversely 148
9.9 Titration of a Mixture of Weak Acids with a Strong Base 150
9.10 Titration of a Polyacid with a Strong Base 151
9.11 Titration of the Monosalt of a Diacid 155

10 Acid–Base Titrations: Further Theoretical Studies 157
10.1 Exact Equation of the Titration Curve of a Strong Acid with a Strong Base and Conversely; Formula Giving the Titration Error 157
10.2 Exact Equation of the Titration Curve of a Weak Acid with a Strong Base and Conversely: Titration Error 159
10.3 Exact Equations of the Titration Curves of Mixtures of Acids, Bases, Polyacids, Polybases, etc. 160
10.4 Precision of Acid–Base Titrations Related to the Sharpness Index ... 160
10.5 Expressions of the Sharpness Index 161
10.5.1 Titration of a Strong Acid with a Strong Base 162
10.5.2 Titration of a Weak Acid with a Strong Base 162
10.5.3 Titration of a Weak Base with a Strong Acid 162
10.5.4 Titration of a Weak Acid with a Weak Base 162
10.6 Extent of the Titration Reaction 163
10.7 Gran’s Diagram .. 165

11 Acid–Base Reactions and Chemical Analysis 169
11.1 The Concept of pH ... 169
11.2 Analytical Operations and pH 169
11.3 Acidity of a Medium as an Index of Its Purity 170
11.4 On the Choice of Examples of Acid–Base Titrations 170
11.5 Direct Titrations of Acid Compounds 171
11.6 Direct Titrations of Derivatives Exhibiting a Basic Character 176
11.7 Back Titrations ... 179
11.8 Titrations After a Chemical Reaction (After Transformation) 181

Part III Redox Phenomena and Analytical Applications

12 Generalities on Oxidation-Reduction 193
 12.1 Definitions .. 193
 12.2 Oxidation Numbers ... 197
 12.3 Redox Tittrations and Oxidation Numbers 199
 12.4 Particular Cases of Redox Reactions: Disproportionation and
 Retrodisproportionation Reactions 200
 12.5 Equilibration of Redox Reactions 201

13 Redox Reactions and Electrochemical Cells 205
 13.1 Electrochemical Cells and Redox Reactions: Example of
 Daniell’s Galvanic Cell 205
 13.1.1 Galvanic Cell 206
 13.1.2 Electrolytic Cell 207
 13.2 Nature of the Electrical Current in an Electrochemical Cell 208
 13.3 The Hydrated Electron 210
 13.4 Cathode, Anode, and Charges of Electrodes 211
 13.5 Electrochemical Cells and Reversibility 212
 13.6 Classes of Electrodes 213
 13.7 Shorthand Notation for Electrochemical Cells 214
 13.8 Some Examples of Cells 216
 13.9 Electrode Potentials: Nernst’s Law 217
 13.10 Standard Electrode Potentials and Standard Reduction Potentials
 of Some Redox Couples at 298 K 220
 13.11 Zero-Current Electrochemical Cell Potentials—Convention 223
 13.12 Formal Potentials ... 225

14 Predicting Redox Reactions 229
 14.1 Redox Phenomena and Acidity 229
 14.2 Redox Phenomena, Complexation, and Precipitation 233
 14.2.1 The Stabilization of a Redox Couple by Complexation or
 Precipitation of One of Its Members 234
 14.2.2 The Increase or Decrease in the Oxidizing Strength
 of One of Its Ox or Red Forms 235
 14.3 Qualitative Prediction of Redox Reactions After Standard
 Potentials .. 239
14.4 Drawbacks of the Prediction Rule Based on the Sole Consideration of Standard Potentials .. 240
14.5 Quantitative Character of a Redox Reaction 242
14.6 Kinetic Considerations Concerning Redox Reactions 245

15 Predicting Redox Reactions by Graphical Means 247
15.1 Predominance Areas of a Redox Couple 247
15.2 Qualitative Prediction of Redox Reactions from the Knowledge of the Predominance Areas 250
15.3 Frost Diagrams .. 253
15.4 E/pH Diagrams or Pourbaix Diagrams 257
15.5 An Example of Application of Pourbaix Diagrams in Analytical Chemistry ... 261
15.6 Extension of Pourbaix Diagrams 263

16 Calculating Equilibrium Potentials of Solutions Containing Several Redox Couples .. 265
16.1 Equilibrium Potentials and Electrode Potentials 265
16.2 Potential of a Solution Containing Only One Redox Couple 266
16.3 General Case: Equilibrium Potential of a Solution Containing Two Redox Couples .. 266
16.4 Determining the Ox and Red Concentrations of a Couple from the Known Equilibrium Potential by Graphical Means 269
16.5 A Particular Case: The Exchange of Electrons is Accompanied by an Exchange of Protons or by an Exchange of Ligands ... 270
16.6 Case in Which One of the Species Redox is Polynuclear 271
16.7 Equilibrium Potential of a Solution When it Contains an Ampholyte ... 272
16.8 Potential of a Solution Containing a Mixture of the Reduced Polyfunctional Member of a Couple and of the Oxidized Member of Another Couple .. 274
16.9 Potential of a Solution Containing a Mixture of an Oxidized Form of a First Couple and of Two Reduced Forms Belonging to Two Other Different Redox Couples 276
16.10 General Considerations Concerning Redox Titrations 277
16.11 Thermodynamic Condition for a Redox Titration Reaction 277
16.12 Kinetic Conditions in Order to Achieve a Satisfactory Redox Titration Reaction .. 278
16.13 Detection of the Equivalence Point of a Redox Titration 279
16.14 General Considerations on Internal Redox Indicators 279
16.15 Some Internal Redox Indicators 280
16.15.1 1,10-Phenanthroline .. 280
16.15.2 Diphenylamine ... 282
16.15.3 Methylene Blue ... 283
16.15.4 Diphenylpyrazine ... 283
17 A Study of Some Redox Titration Curves .. 285
17.1 Titration of the Ferrous Ion by the Ceric Ion, One of the
Simplest Examples of a Redox Titration 285
17.1.1 Common Simplified Theoretical Study 286
17.1.2 Rigorous Study .. 289
17.2 Further Considerations Concerning Symmetrical Titrations:
Titration Error ... 290
17.2.1 Consideration 1 ... 290
17.2.2 Consideration 2 ... 290
17.2.3 Consideration 3 ... 291
17.2.4 Consideration 4 ... 292
17.2.5 Consideration 5 ... 292
17.2.6 Consideration 6 ... 292
17.2.7 Consideration 7 ... 293
17.3 Study of the Titration Curve of Stannic Ions by Chromous
Ions—Generalization to All Asymmetrical Titrations 294
17.4 Redox Titrations in Which a Simultaneous Exchange
of Electrons and Protons or Other Particles Exists 297
17.5 Cases in Which the Equivalence Potential Values Depend on the
Concentration of One of the Reactants 298
17.6 Titration of the Hypovanadous Ion by the Permanganate Ion 302
17.6.1 First Equivalence Point .. 303
17.6.2 Second Equivalence Point 306
17.6.3 Third Equivalence Point ... 306
17.7 Titration of a Mixture .. 308
18 Oxidoreductimetry: Direct and Indirect Iodometries 313
18.1 Oxidoreductimetry .. 313
18.2 Nomenclature of the Titration Methods Involving the Use
of Iodine or the Formation of Iodine 314
18.3 Some Physicochemical Properties of Iodine 315
18.4 Predominance Areas of Some Species of Iodine 315
18.5 Interesting Features Exhibited by the Couple I$_2$/I$^-$ for Its Use
inTitrimetry .. 317
18.5.1 Stability .. 317
18.5.2 Coloration .. 317
18.5.3 Solubilities .. 317
18.5.4 Standard Potential Values of I$_2$/I$^-$ Couples 317
18.5.5 The Influence of pH ... 319
18.5.6 Existence of the Fundamental Reaction of Direct
and Indirect Iodometries .. 319
18.5.7 Detection of the Equivalence Point 319
18.6 The Fundamental Reaction of Iodometries 319
18.7 Iodine Solutions .. 321
18.8 Thiosulfate Solutions .. 323
18.9 Examples of Titration by Direct Iodometry 325
 18.9.1 Determination of Sulfurous Acid, Hydrogen Sulfites, and Sulfites .. 325
 18.9.2 Determination of Hydrogen Sulfide, Hydrogen Sulfides, and Sulfides .. 326
 18.9.3 Determination of Alkaline Cyanides: Fordos and Gelis’s Method .. 326
 18.9.4 Determination of Hydrazine and Its Derivatives 327
 18.9.5 Determination of Arsenicals 328
 18.9.6 Determination of Derivatives of Antimony +III 328
 18.9.7 Determination of Stannous Tin 328
 18.9.8 Determination of Mercurosalts: Extension to the Determination of Mercuric Salts and to That of Reducing Organic Substances .. 329
 18.9.9 Determination of Thiocyanates 330
 18.9.10 Determination of Thiols .. 330
 18.9.11 Determination of Xanthogenates and Derivatives: Determination of Hydrazoic Acid and of Azides 331
 18.9.12 Determination of Hydroquinol 332
 18.9.13 Determination of Vitamin C 333

18.10 Examples of Titrations by Indirect Iodometry 336
 18.10.1 Recall of Information ... 336
 18.10.2 Titration of Nitrous Acid and Nitrites 336
 18.10.3 Determination of Halogens .. 337
 18.10.4 Determination of Hypochlorites 337
 18.10.5 Determination of Halogens at Oxidation Numbers +III, +V, +VII .. 340
 18.10.6 Determination of Metallic Salts “at Their Maximum” ... 340
 18.10.7 Determinations of Arsenic and Antimony at Oxidation State +V .. 342
 18.10.8 Determination of Hydrogen Peroxide and of Peroxy Salts .. 343
 18.10.9 Determination of Aqueous Dioxygen by Winkler’s Method .. 344
 18.10.10 Determination of Peroxides and Hydroperoxides 344
 18.10.11 Determination of Diverse Organic Compounds 344

19 Iodometry in Alkaline Medium, Iodatometry, Periodimetry, and Bromometry .. 347
 19.1 Iodometry in Alkaline Medium 347
 19.1.1 General Considerations ... 347
 19.1.2 Applications .. 351
 19.2 Iodatometry .. 352
 19.2.1 General Considerations ... 352
 19.2.2 Applications .. 355
 19.3 Periodimetry .. 358
19.4 Bromatometry, Hypobromometry, and Bromometry 366
 19.4.1 General Considerations 366
 19.4.2 Oxidation Reactions 368
 19.4.3 Determinations by Fixing bromine into an Organic
 Substrate Either by Substitution or by Addition 373

20 Oxidizations with Permanganate, Dichromate, and Ceric Ions
Some Titration Methods Involving a Reduction Reaction 377
 20.1 Oxidization with Permanganate Ions 377
 20.1.1 General Considerations 377
 20.1.2 Applications of Manganimetry in Acidic Medium 382
 20.1.3 Manganimetry in Neutral and Weakly Alkaline Media .. 386
 20.1.4 Manganimetry in Strongly Alkaline Medium 388
 20.1.5 Determination of Organic Matters in Water 389
 20.2 Titrations with Dichromate Ions: Chromimetry 390
 20.2.1 Definition .. 390
 20.2.2 General Considerations 390
 20.2.3 Applications 393
 20.3 Titrations with Ceric Ions 394
 20.3.1 Some Properties of Cerous and Ceric Salts 395
 20.3.2 Advantages of Cerimetry 396
 20.3.3 Standardized Solutions 397
 20.3.4 Applications of Cerimetry 398
 20.4 Some Other Oxydoreductimetric Titration Methods 402
 20.4.1 Titrations with Titanium III Salts 402
 20.4.2 Titrations with Chromium II Salts 403
 20.4.3 Titrations with Ascorbic Acid 403

21 Some Applications of Redox Reactions in Qualitative Analysis 405
 21.1 Organic Analysis .. 405
 21.1.1 Colorimetric Analysis 405
 21.1.2 Detection in Chromatography 410
 21.1.3 Titration Reactions for Which the Equivalence Point Is
 Detected Through the Occurrence of a Redox Reaction .. 411
 21.1.4 Functional Analysis 412
 21.2 Inorganic Analysis ... 412

Part IV Complexation Reactions—Analytical Applications

22 General Definitions Concerning Complexes Rules of Nomenclature
and Writing .. 423
 22.1 General Definition of Complexes 423
 22.2 Complexes as Compounds Resulting from the Interaction of
 Electron-Donating and Electron-Accepting Species 424
 22.3 Limits of the Set of Complexes 425
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.4</td>
<td>Writing and Systematic Nomenclature of Complexes</td>
<td>427</td>
</tr>
<tr>
<td>22.5</td>
<td>Electrical Charge of an Ion Complex</td>
<td>428</td>
</tr>
<tr>
<td>23</td>
<td>Some Elements Concerning the Chemistry of Complexes</td>
<td>429</td>
</tr>
<tr>
<td>23.1</td>
<td>Attaining Complexes</td>
<td>429</td>
</tr>
<tr>
<td>23.2</td>
<td>Some Ligands Found in Classical Complexes</td>
<td>430</td>
</tr>
<tr>
<td>23.2.1</td>
<td>Some Monodentate Ligands</td>
<td>430</td>
</tr>
<tr>
<td>23.2.2</td>
<td>Some Polydentate Ligands</td>
<td>431</td>
</tr>
<tr>
<td>23.3</td>
<td>Some Aspects of the Chemistry of Complexes</td>
<td>433</td>
</tr>
<tr>
<td>23.4</td>
<td>State of the Ions in Aqueous Solution and Consequences</td>
<td>436</td>
</tr>
<tr>
<td>24</td>
<td>Stability of Complexes: Some Elements Concerning the Kinetics of Their Formation</td>
<td>439</td>
</tr>
<tr>
<td>24.1</td>
<td>Definition of Complexes in the Context of Analysis</td>
<td>439</td>
</tr>
<tr>
<td>24.2</td>
<td>Stability of Complexes: Perfect and Imperfect Complexes</td>
<td>440</td>
</tr>
<tr>
<td>24.3</td>
<td>Formation or Stability Constants of Complexes</td>
<td>441</td>
</tr>
<tr>
<td>24.4</td>
<td>General Methodology of Determining Stability Constants</td>
<td>442</td>
</tr>
<tr>
<td>24.5</td>
<td>Some Examples of Calculations Carried Out with Stability Constants</td>
<td>444</td>
</tr>
<tr>
<td>24.6</td>
<td>Distribution Diagrams</td>
<td>446</td>
</tr>
<tr>
<td>24.7</td>
<td>Formation Curve</td>
<td>448</td>
</tr>
<tr>
<td>24.8</td>
<td>The Complexes as Particle Donors</td>
<td>449</td>
</tr>
<tr>
<td>24.9</td>
<td>Factors Influencing the Stability of Complexes</td>
<td>453</td>
</tr>
<tr>
<td>24.10</td>
<td>Stability of Chelates: Chelate and Macrocyclic Effects</td>
<td>456</td>
</tr>
<tr>
<td>24.11</td>
<td>Kinetics of Complexes’ Formation: Labile and Inert Complexes</td>
<td>459</td>
</tr>
<tr>
<td>25</td>
<td>Superimposition of Varied Equilibria to Complexation Equilibria</td>
<td>461</td>
</tr>
<tr>
<td>25.1</td>
<td>Superimposition of Several Complexation Equilibria</td>
<td>461</td>
</tr>
<tr>
<td>25.2</td>
<td>An Important Particular Case of Parasitic Reactions: Formation of the Complexes Hydroxo, Oxo, and so Forth from the Hydrolysis of Metallic Ions</td>
<td>462</td>
</tr>
<tr>
<td>25.2.1</td>
<td>Hydrolysis of Metallic Ions</td>
<td>462</td>
</tr>
<tr>
<td>25.2.2</td>
<td>Competition Between the Hydroxo Complexes and Other Ligands</td>
<td>464</td>
</tr>
<tr>
<td>25.2.3</td>
<td>Complexation—Precipitation Interaction: Formation of Insoluble Oxides and Hydroxides</td>
<td>468</td>
</tr>
<tr>
<td>25.3</td>
<td>Formation of Polynuclear Complexes; Polymerization</td>
<td>476</td>
</tr>
<tr>
<td>25.4</td>
<td>Ability of Ligands to Complex Metallic Ions and Acidity of Solution</td>
<td>480</td>
</tr>
<tr>
<td>26</td>
<td>Conditional Stability Constants</td>
<td>485</td>
</tr>
<tr>
<td>26.1</td>
<td>Species Existing in Solution When a Metallic Ion Is Titrated with EDTA</td>
<td>485</td>
</tr>
<tr>
<td>26.2</td>
<td>Conditional Constants, Parasitic Reaction Coefficients, and Apparent Concentrations</td>
<td>486</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>26.3</td>
<td>Examples of Conditional Constants’ Calculations</td>
<td>489</td>
</tr>
<tr>
<td>26.4</td>
<td>Quantitative Changes in Coefficients α</td>
<td>491</td>
</tr>
<tr>
<td>26.5</td>
<td>Conditional Constants, Masking, and Selective Complexations in the Presence of Several Metallic Ions</td>
<td>493</td>
</tr>
<tr>
<td>26.6</td>
<td>Conditional Constants and Calculation of the Concentrations of the Different Species in Solution</td>
<td>494</td>
</tr>
<tr>
<td>26.7</td>
<td>Case of Metal Indicators</td>
<td>497</td>
</tr>
<tr>
<td>26.8</td>
<td>Extension of the Concept of Conditional Stability Constants</td>
<td>499</td>
</tr>
<tr>
<td>26.9</td>
<td>About the Interest in the Concept of Conditional Constants</td>
<td>500</td>
</tr>
<tr>
<td>27</td>
<td>Complexometry I: Mercurimetry (Votocek–Dubsky’s Method)</td>
<td>503</td>
</tr>
<tr>
<td>27.1</td>
<td>The Major Difficulty Encountered During Complexometric Titrations</td>
<td>503</td>
</tr>
<tr>
<td>27.2</td>
<td>Mercurimetry: Votocek–Dubsky’s Method</td>
<td>505</td>
</tr>
<tr>
<td>27.2.1</td>
<td>Principle</td>
<td>506</td>
</tr>
<tr>
<td>27.2.2</td>
<td>Equivalence Point</td>
<td>507</td>
</tr>
<tr>
<td>27.2.3</td>
<td>Standard Solutions</td>
<td>510</td>
</tr>
<tr>
<td>27.2.4</td>
<td>Applications</td>
<td>511</td>
</tr>
<tr>
<td>28</td>
<td>Complexometry II: Titrations with EDTA</td>
<td>513</td>
</tr>
<tr>
<td>28.1</td>
<td>Some Properties of EDTA</td>
<td>513</td>
</tr>
<tr>
<td>28.1.1</td>
<td>Acid Dissociation Constants of EDTA</td>
<td>514</td>
</tr>
<tr>
<td>28.1.2</td>
<td>EDTA: A Very Powerful Chelating Agent</td>
<td>515</td>
</tr>
<tr>
<td>28.1.3</td>
<td>Formation Reactions of Metal–EDTA Chelates</td>
<td>516</td>
</tr>
<tr>
<td>28.2</td>
<td>Direct Titration Curve of a Metallic Ion with EDTA</td>
<td>517</td>
</tr>
<tr>
<td>29</td>
<td>Complexometry III: Metal Cation Indicators and Types of EDTA Titrations</td>
<td>525</td>
</tr>
<tr>
<td>29.1</td>
<td>Some Metal Ion Indicators</td>
<td>525</td>
</tr>
<tr>
<td>29.1.1</td>
<td>Azo Derivatives Possessing a Phenol Function</td>
<td>525</td>
</tr>
<tr>
<td>29.1.2</td>
<td>Triphenylmethane Derivatives</td>
<td>527</td>
</tr>
<tr>
<td>29.1.3</td>
<td>Derivatives of Miscellaneous Structures</td>
<td>529</td>
</tr>
<tr>
<td>29.2</td>
<td>Types of EDTA Titrations</td>
<td>530</td>
</tr>
<tr>
<td>29.2.1</td>
<td>Direct Titrations</td>
<td>530</td>
</tr>
<tr>
<td>29.2.2</td>
<td>Back Titrations</td>
<td>531</td>
</tr>
<tr>
<td>29.2.3</td>
<td>Titrations with Indirect Metal Indicators</td>
<td>532</td>
</tr>
<tr>
<td>29.2.4</td>
<td>Replacement or Substitution Titrations</td>
<td>533</td>
</tr>
<tr>
<td>29.2.5</td>
<td>Alkalimetric Titrations</td>
<td>534</td>
</tr>
<tr>
<td>29.2.6</td>
<td>Sequential Titrations of Mixtures, Selectivity, Masking, and Demasking</td>
<td>535</td>
</tr>
<tr>
<td>29.3</td>
<td>Determination of Anions with EDTA</td>
<td>539</td>
</tr>
<tr>
<td>29.4</td>
<td>Other Complexones</td>
<td>540</td>
</tr>
<tr>
<td>30</td>
<td>Applications of the Formation of Complexes in Inorganic Analysis</td>
<td>543</td>
</tr>
<tr>
<td>30.1</td>
<td>Qualitative Inorganic Analysis</td>
<td>543</td>
</tr>
<tr>
<td>30.1.1</td>
<td>Cations’ Characterization</td>
<td>544</td>
</tr>
<tr>
<td>30.1.2</td>
<td>Anions’ Characterization</td>
<td>563</td>
</tr>
</tbody>
</table>
30.2 Quantitative Inorganic Analysis .. 568
 30.2.1 Titration of Ca\(^{2+}\) .. 568
 30.2.2 Titration of Mg\(^{2+}\) .. 569
 30.2.3 Titration of Lead .. 570
 30.2.4 Titration of Bismuth .. 570
 30.2.5 Titration of Aluminum .. 571
 30.2.6 Miscellaneous Titrations .. 571

Part V Precipitation Phenomena—Analytical Applications

31 Applications of the Formation of Complexes in Organic Analysis 575
 31.1 Formation of Complexes with Fe\(^{3+}\) and Fe\(^{2+}\) 575
 31.2 Formation of Complexes with Cu\(^{2+}\) 590
 31.3 Formation of Complexes with Ag\(^{+}\) 597
 31.4 Formation of Complexes with Co\(^{2+}\) 599
 31.5 Formation of Complexes with Hg\(^{2+}\) 601
 31.6 Formation of Miscellaneous Complexes and Analytical Applications ... 603

32 Intrinsic, Ionic, and Total Solubilities; Solubility Product and Precipitation .. 609
 32.1 Solubility Product and Intrinsic Solubility 609
 32.2 Generalization of the Concept of Solubility Product 610
 32.3 Thermodynamic Justification of the Concept of Solubility Product .. 612
 32.4 Intrinsic Solubility, Total Solubility, and Ionic Product 613
 32.5 Difficulties Encountered in the Calculations of Solubilities 617

33 Dependence of the Solubility on the Solution’s Ionic Strength and on the Presence of Common Ions: Superimposition of Several Precipitation Equilibria .. 619
 33.1 Influence of the Ionic Strength on the Solubility 619
 33.2 The Common Ion Effect ... 622
 33.3 Superimposition of Two Precipitation Equilibria: Separation by Precipitation .. 628

34 Solubility and pH .. 633
 34.1 Solubility of Acidic and Basic Solutes as a Function of pH 633
 34.1.1 The Monoacid or Monobasic Case 633
 34.1.2 The Diacid or Dibase Case 636
 34.1.3 The Ampholyte Case .. 637
 34.2 Solubility of Poorly Soluble Salts as a Function of pH 639
 34.2.1 Qualitative Aspect .. 639
 34.2.2 Acid–Base Equilibria and Precipitation in a Buffered Medium: Quantitative Aspect 640
 34.2.3 Solubility of Poorly Soluble Salts in Unbuffered Media 642
34.3 Fractional Precipitation of Ions as a Function of the Solution’s pH Value .. 648
34.3.1 Qualitative Aspects ... 648
34.3.2 Fractional Precipitation of Metallic Ions as Sulfides 649
34.3.3 Fractional Precipitation of Metallic Ions as Hydroxides 654
34.3.4 Fractional Precipitation of Metallic Ions as Oxinates 656

35 Precipitation and Complexation .. 659
35.1 Dissolution of a Precipitate by Complexation of the Metal Cation Constituting it: Generalities 659
35.2 Dissolution of a Precipitate by Complexation: Quantitative Aspects ... 660
35.3 Dissolution of a Precipitate by Complexation: Further Calculations ... 662
35.3.1 Dissolution of Silver Bromide with a Sodium Thiosulfate Solution ... 663
35.3.2 Dissolution of a Precipitate with an Excess of Precipitating Reagent ... 664
35.3.3 Precipitation of Metallic Sulfides 668
35.4 Destruction of a Complex by Formation of a Precipitate 672
35.5 Separation by Complexation and Precipitation 676

36 Theoretical Study of Some Precipitation Titration Curves 679
36.1 Case of a Symmetric Titration: Titration of A Halide by Silver Ions and Inversely .. 679
36.1.1 Titration Reaction .. 679
36.1.2 General Equation of the Titration Curve 680
36.1.3 Shape of the Titration Curve 682
36.1.4 Simplified Equations of the Titration Curve 682
36.1.5 Titration Error .. 683
36.1.6 Inflection Point of the Titration Curve 684
36.1.7 Inverse Titration ... 685
36.2 Dissymmetric Titrations ... 686

37 Titrimetric Methods Involving a Precipitation 689
37.1 Argentometry .. 689
37.1.1 Definitions .. 689
37.1.2 Generalities .. 689
37.2 Argentometry in Acidic Medium: Charpentier–Volhard’s Method .. 690
37.2.1 Principle .. 690
37.2.2 Theoretical Justification of the Method 690
37.2.3 Conditions in Which the Titration Must Be Carried Out ... 691
37.2.4 Titration Error .. 692
37.3 Argentometry in Neutral or Weakly Alkaline Medium: Mohr’s Method 693
 37.3.1 Principle ... 693
 37.3.2 Mechanism of the Endpoint Indication: Titration Error .. 694
 37.3.3 pH Conditions 695
 37.3.4 Applications 696
37.4 Argentometry in Weakly Acidic or Neutral Medium: Fajans’ Method 696
 37.4.1 Principle .. 696
 37.4.2 Indication Mechanism 696
 37.4.3 Experimental Conditions 697
37.5 Liebig–Denigés’ Method 697
 37.5.1 Definitions .. 697
 37.5.2 Principle of Liebig’s Method 698
 37.5.3 Equations of the Titration Curve 698
 37.5.4 Titration Error 700
 37.5.5 Drawback to Liebig’s Method 700
 37.5.6 Denigés’ Modification 700
 37.5.7 Applications and Extensions of Liebig–Denigés’ Method ... 702
 37.5.8 Standard Solutions 702
37.6 Some Other Precipitation Methods 703

38 Gravimetry by Precipitation 705
 38.1 Principle and Some Definitions 705
 38.2 Conditions for the Success of a Gravimetry by Precipitation Determination 706
 38.3 Insolubility of the Precipitate in the Medium 707
 38.4 Composition of the Precipitate; Impurities of the Precipitate 708
 38.4.1 Impurities by Coprecipitation 708
 38.4.2 Impurities by a Lack of Selectivity of the Precipitation Reaction 710
 38.5 Obtaining a Suitable Precipitate ... 712
 38.5.1 Purity of Precipitates and Size of Particles 712
 38.5.2 Size of Particles 712
 38.6 Precipitation from Homogeneous Solution 714
 38.7 The Gravimetric Factor 716
 38.8 Sensitivity of Gravimetry 718
 38.9 Some Experimental Details 719
 38.9.1 Quantitative Filtration 719
 38.9.2 Drying of Precipitates 719
 38.9.3 Precision Balances 719
 38.9.4 Thermobalances 719
 38.10 Some Characteristics of Gravimetry by Precipitation 720
39 Some Applications of the Precipitation Phenomenon in Inorganic and Organic Qualitative and Quantitative Analysis

39.1 Titrations Involving the Precipitation of Insoluble Silver Salts

39.1.1 Determination of Organic Halogens

39.1.2 Determination of Hydrochlorides, Hydrobromides, and Hydroiodides

39.1.3 Some Examples

39.1.4 Zeisel’s Method: Determination of Methoxy and Ethoxy Groups

39.1.5 Prototropic Titrations in the Presence of Silver Ions

39.2 Other Titrimetric Methods Involving a Precipitation Phenomenon

39.3 Gravimetry

39.3.1 Gravimetric Assays Involving Ignition

39.3.2 Gravimetric Assays Involving a Prior Solvent Extraction

39.3.3 Assay Involving Solvent Extraction and Drying to Constant Weight

39.3.4 Gravimetric Determinations Involving the Formation of a Precipitate that Is Weighed

39.4 Determination of Inorganic Ions After Precipitation with Organic Precipitants

39.5 Qualitative Organic Analysis

39.6 Inorganic Qualitative Analysis

Appendix A The Chain Rule or Differentiating a Function of a Function

Appendix B Sharpness Index for the Titration of a Strong Acid with a Strong Base

Appendix C Sharpness Index for the Titration of a Weak Acid with a Strong Base and Conversely

Appendix D Sharpness Index for the Titration of a Weak Acid with a Weak Base

Appendix E Finding an Approximate Expression of the Fraction α of the Added Titrant That Has Reacted

Appendix F A Study of Liebig–Denigés’s Titration Curves

Bibliography

Index
Ionic Equilibria in Analytical Chemistry
Burgot, J.-L.
2012, XXIV, 772 p., Hardcover
ISBN: 978-1-4419-8381-7