Chapter 2
Working Communities and the Victorian-American Company Town

Among the busy and thriving new places on the Upper Peninsula of Michigan, is the little village [of Fayette]. Located as it is just out of the way, and aside from any great line of travel, it is all the more creditable to the projectors of the enterprise which built it up and still maintains it, that so prosperous a town should exist there

(Mining Journal 1869).

Introduction

Studying power and capitalism at a nineteenth-century American company town illuminates broader aspects of industrialization, class formation, and modernization in the United States and elsewhere during the long-term shift from agrarian to industrial lifeways. This kind of research contributes to a better understanding of power dynamics in company towns, power shifts resulting from immigration, and consumerism in restricted markets. Understanding local and regional processes is essential for exploring the broader implications of hegemonic reinforcement (and worker internalization) of strong work ethics, proper social behaviors, good citizenry, and knowing one’s place, so to speak. It is necessary for interpreting world-wide, ongoing processes of globalization, modernization, and immigration, as well as for understanding socioeconomic power and individuals’ agency in the midst of such processes.

This chapter provides historical, social, and technological background to contextualize working communities in industrial capitalism and also introduces research at Fayette. The first section discusses the reorganization of work during the development of industrial capitalism, and provides an overview of technologically centered communities, especially company towns. The second section provides historical context for Fayette as a Victorian company town in America’s upper Midwest, including the technological context and cultural geography of iron smelting. The third section summarizes the majority of historical and archaeological
research undertaken at the site, as well as documents generated for park management and restoration purposes. The final section introduces the archaeological research that provides the primary data for this volume.

Working Communities and Industrial Capitalism

Because Fayette was immersed within industrial capitalism, it had much in common with other technologically centered, working communities in the past and present, in this region and elsewhere. In particular, the eighteenth and nineteenth centuries witnessed sweeping changes associated with industrial capitalism. New communities were formed, often in rural areas, and technological innovations emerged in tandem with related shifts in social organization, urbanization, and power relations. Below is a brief selection of research illuminating these changes, as discussed by historians of technology, social historians, cultural geographers, sociologists, anthropologists, and archaeologists.

The Reorganization of Work

In the eighteenth and nineteenth centuries, workers and working communities of the United States and Western Europe experienced rapid industrialization, accompanied by shifts in social structures and organizational control. Burris (1993) provides an important introduction to the organization of work from craft production to the postindustrial era over approximately 400 years. She uses a framework that is organized chronologically and assumes changes in production paralleled shifts in organization, but she also asserts that such changes were not linear or consistent. Burris’ framework of organizational control structures begins with craft/gild and family control structures of the precapitalist period, when the labor process was only loosely controlled through apprenticeships and the prevailing ideologies of gender and socio-economic position. Beginning with capitalism in the eighteenth century and continuing into the present, forms of control include simple control (e.g., time discipline, direct supervision, and coercive authority), technical control (production is less flexible and machines set the pace), bureaucratic control (job specialization, increased management, and clear job ladders), and professional control (professionals are formally trained and then controlled through ethical codes and self-regulation).

The transition to industrial capitalism coincided with widespread reconfigurations of numerous groups of people, such as agricultural communities, aristocrats and gentry, skilled craftsmen, and laborers. Two of the most notable groups that emerged during that transition are the working class and engineering professionals. Thompson (1966) provides a coherent overview of classic literature on the emerging working class. Of particular relevance is Marx and Engels’ assertion that industrial capitalism and subsequent relations of production exploit factory workers and their families, and that exploitation will lead to working class consciousness and solidarity, in spite of gender, ethnic, and economic diversity within the working class.
A number of American historical archaeologists working in industrial contexts have specifically explored issues surrounding class formation, class consciousness, and working class solidarity (e.g., McGuire 2008; McGuire and Reckner 2002; McGuire and Walker 1999; Saitta 2007).

Although it has been less studied, it is also important to recognize the emergence of the engineering profession from the same system (Gispen 1989; Hovis and Mouat 1996). The development of this new professional category illustrates the existence of complex social groups that were neither laborers nor owners. Engineering combined practical know-how of craftsmanship with theoretical knowledge from a formal education system, and engineers occupied an ambiguous role. Because engineering maintained a need for practical knowledge, learning on the job (reminiscent of the craftsman’s apprenticeship) made advancement from the lower technical ranks possible. However, research on late-nineteenth and early twentieth-century mining in the western U.S. demonstrates that the emergence of mining engineers also accompanied deskilling and displacement of more traditional, “jack-of-all-trades” miners (Hovis and Mouat 1996:451). With the emergence of the engineering profession, nonengineering workers became increasingly specialized and had less freedom to make technological decisions at the worksite. As with mass production, mine workers such as muckers and shoveler’s “had become one more labor fragment to be applied as needed” (Hovis and Mouat 1996:451; for a discussion of job titles and respectability within the class system, see Sennett and Cobb 1993).

Social history and archaeology provide some of the most vivid accounts of the transition from craft production to industrial capitalism, particularly in the United States. Gutman’s (1977) social history describes the technological and coercive control mechanisms encountered by first generation factory workers. Though Gutman focuses on a variety of interest groups, quotations from factory workers provide some of the most convincing data for a rather startling transition to industrial capitalism for some individuals, as expressed in this clothing worker’s poem (cited in Gutman 1977:24):

The clock—I shudder—Dost hear how it draws me?
It calls me “Machine” and it cries [to] me “Sew”!

The suggestion that workers were to become cogs in a machine of industrialism – mere operatives as opposed to skilled craftsmen – is also found in material evidence of industrial capitalism. For example, archaeology at the Lowell Boott Mills, Massachusetts, yielded tangible evidence of the pervasiveness of industry, including regulated workers’ housing and overlapping industrial and domestic services (Beaudry 1987, 1989).

Work and domestic organization is sometimes interpreted in a positive light as progress toward efficiency (e.g., Wilkinson 1965), or more ominously as oppressive mechanisms of social control. Archaeological investigations at the Harpers Ferry Armory, West Virginia, address the effects of the industrial system and control mechanisms on workers. For example, Larsen (1994) discusses restrictions on piecework conducted at workers’ homes during the transition to mass production and subsequent restructuring of work. Management at Harpers Ferry developed a variety of control mechanisms, including surveillance technologies, timed
machinery, moral reform, and town planning. Many workers found the industrialists’ methods objectionable and resisted the new system using both subtle and overt means (Shackel 1996).

In the face of organizational control, factory discipline, boundary maintenance, shifts in technology, and far-reaching changes in the structure of work and society, employees do not always welcome organizational control and technological change. For example, Lucas and Shackel (1994) assert that a nineteenth-century craftsman rejected mass-produced goods in his home as a statement of his dissatisfaction with industrialization in his workplace. Similarly, Ong’s (1987) ethnography of women factory workers in industrializing Malaysia suggests that the women use spirit possession in a rebellious bid for empowerment. Terkel (1974) collected American working people’s oral histories in the era of late industrial capitalism and documented extensive lack of job satisfaction and pervasive malaise over how their work was undervalued. Even in the current postindustrial economy of the United States, where employees allegedly have vested interests in productive work, Vaughan (1999) demonstrates that routine nonconformity and misconduct are systematically produced in the workplace.

Technologically Centered Communities, Company Towns, and Paternalism

As Thompson (1966) so vividly demonstrated, individuals’ relationships to technology and production shape their worldviews. In technologically centered communities where social and economic divisions are often pervasive and highly visible, employees frequently express their relationships to organizational control structures though a sense of community or class consciousness. Case studies by Saitta (2007), Hardesty (1998), and Nash (1993) demonstrate that class consciousness and community identity can emerge as powerful statements to industrialists and management. Saitta’s case study synthesizes work at archaeological sites related to the Colorado Coalfield Strike of 1913 and 1914, where striking coal miners and their families engaged in deadly conflict with corporate entities and state militia (see also McGuire 2008). In Hardesty’s study, nineteenth-century miners avoided the owners’ morally restrictive company town, and favored services in another nearby community. Nash describes the oppressive working conditions of contemporary tin mining in Bolivia and the resulting sentiments of worker solidarity and community unity. In Nash’s study, during industrial crises including strikes and economic slumps, the employees’ benefits are restricted and often the company commissary shuts down entirely. Various elements of the working class community, including the Housewives’ Association, pooled resources to redistribute supplies and provide moral support. This is one of many examples in which peer groups offered collective means for support and negotiation. In these and other contexts, workers have found support and expressed power through membership in unions, community organizations, and religious institutions.
Alternatively, technologically centered communities sometimes also have intensely factionalized groups, even when the groups belong to the same economic class (e.g., Sheridan 1998; Van Onselen 1982). For example, in south-central African mining communities in the late-nineteenth and early-twentieth centuries, black and white service sector workers were members of the same economic class, but black workers did not enjoy the same social or political status (Van Onselen 1982). Regulations established by mine owners and the government consistently treated black and white workers unevenly, offering dissatisfied whites political recourse to make demands, and only leaving room for blacks to rebel in subversive ways. Race and ethnicity are not the only divisive factors in these communities, as Red Hill’s contemporary oral history demonstrates a vast array of differing opinions from white British miners (Parker 1986). On the one hand, there were elements of community and working class solidarity in the face of a potential mine closure; statements equating “the pit” with family and life itself are common (e.g., Parker 1986:20). On the other hand, members of the working class reacted differently depending on their families’ history with the mine and in accordance with their household development cycles (e.g., miners with ill children were more tempted to break the strike).

The complex intersection of ethnicity, gender, class, and power found within industrial communities is perhaps even more complicated in situations of direct and planned social control, as in company towns. Company towns are defined as communities occupied by employees of one or more companies that own all or most of the land, housing, and support services (Crawford 1986; Davis 1930:119). Some company towns were expedient and pragmatic plans reproduced repeatedly by companies in different locations, regardless of local environments; others were inspired by ideologies of “religion, labor, or design” that attempted to “mitigate the effects of economic logic by imposing social and physical planning, … [emphasizing] conceptual order and symbolic form” (Crawford 1986:2) (see also Allen 1966; Garner 1984, 1992). The latter type, often described as a model town, often involved some form of Christian benevolence, “justified by economic rationality” (Crawford 1986:2).

Industrial benevolence of this kind is often discussed in terms of paternalism, referring to the protective, yet controlling, relationship between a (male) parent and child. Corporate paternalism can be interpreted on a continuum of power, as oppressive and manipulative behavior on the part of the owners and managers; or as a gentle, supportive approach to worker/owner relations; or as a negotiation between workers and owners, with informed and politically active employees. For example, the interdisciplinary investigations at the Boott Mills in Lowell, Massachusetts showed that the corporate system in Lowell permanently altered the relationship between work and its outcome; what is more, it brought about a change in the organization and economy of working class households. The corporate ideology that promoted social control as a mechanism for ensuring a profit for a few fostered the development of a pervasive system that extended beyond the workplace and took charge of the domestic, religious, and educational aspects of workers’ lives (Beaudry 1987:14).

In the Great Lakes region, Alanen (1979:256) suggests that “town planning activities undertaken by mining companies generally proved to be idealized, free-enterprise concepts with the objective of stabilizing the work-force and
improving employee efficiency, health, and morality.” Apparently, these ideals did not always translate into reality, as Lankton (1991) describes numerous strikes and protests in upper Michigan’s nineteenth-century mining industry. In other cases, industrialists in the area did have some success in preemptively raising wages before workers complained publicly. In doing so, they turned a bad situation into a “public relations victory;” and “avoided the humiliation of making wage concessions to an angry band of men parading in the streets” (Lankton 1991:204).

Gaventa (1982:63) stresses the importance of choice in workers’ negotiation with the company. Upon agreeing to work for the company, employees agreed to accept company governance and accepted (perhaps, demanded) the paternalistic benefits to which they were entitled. Workers within the company system often knew what company benefits they enjoyed as compared to everyone else, and what sort of a future they might expect if they continued to work and live within the conditions outlined by the company. By working for the company, employees hoped to attain certain desirable goals such as upward mobility and particularly earning one’s place in the stratified, economy-driven social arena of the United States (see Ginger 1965:86–95; Gutman 1977). The concept of coercion (on the company’s part) vs. resistance (on the worker’s part) is too simplistic. More believable is that workers had choices to make, though companies may have exaggerated benefits.

It is important to note that, while this volume focuses on a nineteenth-century company town in America, studying power relations within a paternalistic setting has wide-spread relevance. To name just a few examples, scholars have discussed paternalism in the context of enslaved African-Americans (Garman 1998); colonialism (Kaczynski 1997); gender and ethnicity (Laliberte and Satzewich 1999; Paulson and Calla 2000); historical industries in France, Scandinavia, Britain, and southern Africa, (Gilbert 1991; Nielsen 1994, 2000; Reid 1985; Van Onselen 1982); and modern industries in India, Bolivia, and southern Africa (DuToit 1993; Ewert and Hamman 1999; Nash 1993; Panjwani 1984; Sylvain 2001).

Fayette, Michigan: An Iron Town in the Gilded Age

Fayette, Michigan was a nineteenth-century company town that was built to support iron-smelting operations. The previous section addressed how working communities such as Fayette were immersed within industrial capitalism and how similar communities felt the effects of increasing rationalization and bureaucracy. There are also technological and chronological factors to consider in Fayette’s social history, and specifically what it meant to be an iron-producing town during the late-nineteenth century. Residents’ everyday experiences in life and work were profoundly entwined with the processes of iron production and the social milieu of the Victorian era.
Nineteenth-Century Iron Production

In the nineteenth century, there were numerous technological transitions in the production of iron, particularly in the use of fuels and blast furnaces (Gordon 1992; Gordon and Malone 1994; Warren 1973). Regardless of fuel type, all blast furnaces operate on similar principles. Blast furnaces combust and reduce a mixture of fuel, iron ore, and flux to produce iron in a chemical process. The flux, usually processed limestone, combines with impurities in the iron ore (e.g., sand and clay) to form the waste product known as slag. This process extracts the impurities from the ore, and only the molten iron was left.

Furnaces ran constantly, 24 hours each day for months and even years at a time, in order to maximize production and maintain the internal heat and pressure of the structures. An interruption in the process was disastrous, because the partially combusted and molten material would have to be removed from the furnace. Usually, this could only be accomplished by dismantling and rebuilding large portions of the furnace walls.

The main components of any blast furnace are the blowing apparatus, tuyere(s), charging deck, throat, bosh, and hearth. The fuel, flux, and ore were carried to the throat (top opening) of the furnace and dumped into it using a charging apparatus. Individual workers initially carried out this process, but it was usually mechanized by the later nineteenth century. In that period, the charging machine often took the form of a hoist, which operated by a motor that ran the gearing, pushing the material from bins out into the furnace.

The furnace was kept full at all times. New materials worked their way down the throat to the bosh, which is the widest part of the furnace just above the tuyere, where combustion takes place. A blast of air is blown into the furnace through the tuyere. The blast provides oxygen to the combustion process, similar to the effect a person produces when blowing on a small fire to make it burn hotter. Initially, water-powered bellows created the blast of air, but later, nineteenth-century innovations used boilers and stoves for a hot blast.

Molten slag and iron collect in the hearth below, where workers tap them off through a small opening. Slag is lighter than molten iron and floats to the top of the reduced mixture, and at regular intervals, both slag and iron are tapped off at the base of the furnace. There, slag is skimmed off the top and disposed of, and molten iron runs into beds of sand in a casting shed (also called a casting house). Depressions in a level sand floor are filled with iron to form bars of manageable size (called pig iron) for transportation to other industrial sites (Fig. 2.1).

Although no detailed documents exist that describe employees’ jobs at Fayette’s furnace, job titles in company documents (see Chap. 5) indicate that work was structured similarly to other comparable furnaces of the period. Gordon and Malone (1994:242) depict the typical labor structure at blast furnaces, and describe how furnaces required a large crew overseen by a founder. It was the founder’s job to coordinate all materials and labor required to smelt the iron. Because the founder could not see directly inside the furnace during blast, he relied on craft knowledge.
to assess sounds and smells from the furnace, as well as the appearance of the iron when tapped. The founder needed to make frequent adjustments to the process. On any given day, the mixture inside the furnace combusted differently, depending on the materials used and the weather conditions. The founder’s intangible, craft-like familiarity with the technology, as described by Gordon and Malone (1994), is also similar to the findings of cognitive anthropologists in studies of blacksmithing (Keller and Keller 2008).

Gordon and Malone (1994: 242–244) describe how even a fairly small furnace required at least a dozen workers, citing a mid-nineteenth-century furnace in Connecticut as an example (Gordon and Raber 1984). The furnace employed 15 people: one founder, one cinderman, three men to run the blowing engines for the blast, two (char)coal forkers, two helpers, and five laborers. Gordon and Malone (1994:243) suggest there was very little division of labor for most workers at the furnace, and they probably shifted from task to task as needed. By contrast, the founder and cinderman had more specific responsibilities and were present at the furnace every time the furnace was tapped, every 12 hours.

Two crews typically worked at the furnace. Charging the furnace was a continuous process maintained by the charging crew. Each half-hour, the engine man shut off the blast and a filler opened the door in the top of the furnace. From the charging deck, the filler and a helper shoveled hundreds of pounds of ore, bushels of charcoal, and flux into the furnace. The door was closed and the blast

Fig. 2.1 Casting bars of pig iron at a nearby furnace in Munising, Michigan. This late-nineteenth-century photo is taken from within a casting shed, looking at the exterior façade of a furnace. Photo provided courtesy of the Michigan Historical Museum
put back on. Then, they worked together with another laborer and a coal forker to prepare materials for the next charge. A second crew worked at the base of the furnace, in the casting house. Throughout the blast, the cinderman periodically drained slag (also called cinder) from the hearth into a sand pit. Once it cooled, it was broken into pieces and disposed of. A laborer and a helper prepared the sand for the molten iron by moistening the sand and making channels and furrows in it. From the furnace’s tap hole, a main feeder line in the sand led to branch lines, which then led to smaller furrows of a suitable size for making iron bars. Sand dams were used to control the flow of molten iron. Approximately every 12 hours, the founder and cinderman were on hand to tap the iron. The founder shut off the blast, removed the clay plug from the tap hole, and allowed the molten iron to begin flowing through the sand channels. Once the iron was sufficiently cool, the laborer and helper used a sledge to break off the iron bars. Then they removed them from the sand and stacked them for later transportation (Gordon and Malone 1994:242–243). Bars of pig iron were eventually shipped to various locations and distributed to other industries for manufacturing.

The arrangement of molten iron channels in the sand gave rise to the name “pig iron.” Molten iron was tapped off from the furnace and cast in rectangular bars on the sand floor. The main channel of tapped iron was thought to resemble a mother sow, and the smaller furrows that eventually formed bars of iron were thought to resemble suckling baby pigs. The use of an agrarian metaphor for this industrial process is an interesting hint at the early shift from agricultural to industrial lifeways, and how close agrarian lifeways were in memory.

Other agrarian metaphors are also used in describing the history of iron production. Early nineteenth-century iron production is sometimes described as taking place on “plantations,” because of the rural and small-scale nature of the undertakings. Often, they were self-sufficient operations, producing not only iron but also their own food, and “were therefore as much agricultural as industrial operations” (Schallenberg and Ault 1977:436). As described in the next section, Fayette was built in the latter nineteenth century. It was a larger community than the iron plantations described above, but nonetheless still bore the hallmarks of a remote industry.

The Cultural Geography of American Iron Towns

The community of Fayette was fairly isolated in the nineteenth century, largely because its raison d’être was to smelt iron. It made use of the ample fuel, ore, and transportation resources of this remote location. In particular, upper Michigan had vast supplies of iron ore that provided the majority of ore for American blast furnaces from 1880 to 1900 and further sustained American iron production for decades thereafter. It has even been observed that the late-nineteenth-century American iron and steel industry “rose to international prominence largely because of high-grade ores” from upper Michigan (Reynolds 1989:112).
Before the 1830s, pig iron in the United States was manufactured in blast furnaces predominantly using charcoal fuel. Markets tended to be localized, and small furnaces satisfied local consumers’ needs. The countryside was sprinkled with small ironworks, and larger market centers were marked by higher concentrations of such ironworks. The “advantages of scatter” were that the fuel source – forests – were spread fairly evenly over the landscape so that sometimes the industry was even considered “analogous to agriculture,” as discussed above (see also Schallenberg and Ault 1977:436; Warren 1973:11).

There were two stages of growth in iron production in the United States. The first stage, which was predominant until 1850, is defined by a dependence on charcoal fuel and “implied small-scale and generally scattered production” (Warren 1973:329). Production was scattered because of the dispersed but plentiful fuel source. Early market demand was complimentary to scattered production centers; settlers in the frontier regions were also dispersed, and they needed basic iron tools and construction materials for homesteading. Later, as farmers cleared more land, timber suitable for charcoal was not as plentiful, and expanding railroads opened up new markets outside of local regions (Warren 1973:2). Types of iron became more specialized as producers tailored iron for unique uses such as shipbuilding. These changes marked the second stage that began around 1850. The transition was also marked by the use of mineral fuels such as anthracite and coke; large conglomerate corporations replaced small, dispersed iron works.

Early use of charcoal fuel was sufficient for many local markets, and small-scale production using charcoal fuel persisted well into the late-nineteenth century in certain timber-rich regions with localized needs for iron. In most regions of the United States, iron production excelled after the Civil War, and American industrialists increasingly used coke to produce larger quantities of iron. What began during Reconstruction continued with westward expansion, as industrialists and entrepreneurs built miles of railroads and canals, both of which consumed large amounts of iron. Iron was used increasingly for ships, architecture, boilers and machines, firearms, and hand tools (Warren 1973).

After the Civil War, even as the demand for iron increased, engineers began choosing steel over iron, particularly for structures and machines. The trend continued such that, “by the early twentieth century, steelmaking rather than ironmaking was the paradigm of American heavy industry” (Gordon and Malone 1994:155). The eastern U.S. lacked large supplies of the bituminous coal needed to make steel, so instead developed a large steel industry around the anthracite deposits such as those in Pennsylvania. New mineral fuels such as coke and anthracite could be used in furnaces originally designed for charcoal. However, the use of mineral fuels also accompanied a shift to larger furnaces, and higher rates of production. Instead of situating ironworks in isolated wooded areas, mineral-fueled iron and steel works were increasingly located in larger towns, near canals and railways (Gordon and Malone 1994:272).

Fayette’s iron works suffered the same fate as the other charcoal-fired iron industries described above. By the late-nineteenth century, Fayette’s dwindling natural resources, particularly hardwood forests, adversely affected profits. This factor and the declining demand for charcoal-fired iron contributed to Fayette’s demise in 1891 (Friggens 1973:1, 72; SSOE and Quinn Evans Architects 1996:48).
American Communities in the Gilded Age

However isolated the Fayette community might seem in the historical landscape, its residents undeniably participated in the economic and social networks of the times. Fayette was established in 1867, in the post-Civil War Reconstruction era, and it thrived in the 1870s and 1880s. This was America’s Gilded Age, a period named for the 1873 novel authored by Mark Twain and Charles Dudley Warner. The Gilded Age was a satire and morality tale that critiqued the American pursuit of wealth. The novel parodies the contemporary trends in America toward rapid and intense industrialization, shady real estate deals, corrupt politics, and ruthless accumulation of money. It was the era of the famed robber barons such as Carnegie and Rockefeller, who accrued vast fortunes and built transcontinental railroads, industrial complexes, museums, and libraries. Many of these accomplishments were fueled by the exploitation of the environment and of laboring men, women, and children. Some of the most exploited people in America were recent immigrants who came to this country in large numbers during the Gilded Age. Charles Darwin’s 1859 The Origin of Species inspired social and moral philosophies such as the “survival of the fittest.” Industrialists and investors justified exploitation as legitimate business.

The Progressive Era of the late-nineteenth- and early-twentieth centuries marked a reaction to the social ills and environmental pollution that accompanied the intense industrialization of the Gilded Age. Fayette ceased to operate as an industrial community in 1891, before the Progressive Era began in earnest. Thus, its residents did not experience the social and environmental reforms that accompanied it.

Fayette’s lifetime as a company town also spanned the Victorian Era, named for the reign of England’s Queen Victoria (1837–1901). This time period generally coincides with the Gilded Age and refers to American and British trends in social values, consumerism, and fashion, as well as to the political and economic trends discussed above. Victorianism was generally derived from urban, British-American, Protestant values, particularly the values of hard work, self improvement, sexual repression, punctuality, sobriety, and modern and generally compulsive behavior; the trends that began with bourgeois Protestants soon became pervasive among many different groups of Americans (Howe 1976:10, 17–18).

While notions of gentility and polite society for the aristocracy developed in the eighteenth century, it was not until the nineteenth century that the middle classes emerged and actively pursued a genteel lifestyle (Bushman 1993; Howe 1976) (for a sociological analysis of the development of mannered society, see Elias 2000). Bushman (1993:xiii) explains that during this period, industrialization, mass-production, and middle-class consumerism fed one another and that “middling people found ways to assemble the requisite accouterments of what might be called vernacular gentility.” In the new social order, many individuals strove to present an outward, refined appearance. This created a culture of exclusion, in which self-declared refined people ostracized the rude, the coarse, and the unfashionable. However, pursuit of gentility did not always polarize the
classes as one might expect. Instead, notions of gentility “offered the hope that anyone, however poor or however undignified their work, could become middle-class by disciplining themselves and adopting a few outward forms of genteel living” (Bushman 1993:xv–xvii). This was the American dream of upward mobility. It had the peculiar effect of teaching the population “to live like gentlemen and ladies even when the productive mechanisms of society instructed them to work like slaves” (Bushman 1993:xviii). The intersection of genteel consumerism with economic class and social status is an important theme in this volume (see especially Chaps. 5, 7, and 8).

In fact, consumerism and instruction played a large role in the refinement of middle-class people. Magazine articles and instruction manuals abounded in the latter nineteenth century and educated the public, especially housewives, in the art of refined domesticity, sometimes referred to as the cult of domesticity. For example, *The House Beautiful: Essays on Beds and Tables, Stools and Candlesticks*, first published in 1877, explains in great detail how to banish coarse, rude furnishings from one’s home and to tastefully decorate with balanced colors, harmonious furniture, well-placed lace, and endless knick-knacks (Cook [1877] 1995). The author convincingly argues that his prescriptions for good taste are affordable to anyone and encourages his readers to pursue refinement, no matter their economic standing. He even suggests that a wealthy man with a beautifully decorated house does not necessarily have excellent taste; most likely, “it is not his taste at all, but the taste of the town” (Cook [1877] 1995:332). It retrospect, “the town” was part of the wider Victorian ideals of good taste, refinement, and upward mobility. In particular, the notion of upward mobility was inextricably embedded within the ideals of industrial capitalism.

Research at Fayette

The nineteenth-century community of Fayette exists today as a historic state park. A number of buildings and structures are still visible on the landscape, including two charcoal-fired blast furnaces, charcoal and lime kilns, company offices, a town hall, and a variety of commercial and industrial buildings. There are also a number of upper- and middle-class houses still available for visitors to tour, but the working-class log cabins are no longer standing. Fayette’s built environment is described in greater detail in Chap. 5.

As a historic state park, Fayette has received substantial attention from historians, archaeologists, architects, and land managers. The intention here is not to provide a synthesis of all research at the site or to provide an exhaustive bibliography of resources for Fayette. Rather, the majority of resources available are summarized here with a focus on social history, neighborhood landscapes, and household consumerism. The following is a summary of histories and archival resources, landscape studies, and archaeological research.
Histories, Park Management Plans, and Archival Resources

Fayette’s status as a historic state park has generated numerous master’s theses, as well as transcriptions and compilations of oral histories, historical letters, company ledgers, newspaper articles, and cemetery records. Many of these documents are on file at Fayette Historic State Park and the Michigan Historical Center. There are also a number of manuscripts produced mostly for interpretive and general research purposes, for example, focusing on the laborer’s cabins (Friggens 1989), workers at Fayette (Leiby 1979), death records for Fayette residents (Laasko n. d.), and the history of iron making at Fayette (Quinlan 1979). This body of research is too extensive to summarize here, but many of the documents will be cited in the following chapters.

In particular, three documents provide well-organized, thorough descriptions of the Fayette townsite and its history. Friggens (1973) was the first to provide a detailed social history of the townsite and its occupants. His well-researched thesis situates Fayette in the wider U.S. economic and social context and presents detailed information about life within the company town. Major restoration work at the site began in 1974, when the *Restoration and Stabilization Recommendations for Historic Fayette Townsite* report documented all known buildings and structures and outlined extensive plans for repairing several buildings (National Heritage Corporation 1974). In 1996, a Cultural Resource Management Plan was developed for Fayette (SSOE and Quinn Evans Architects 1996). This document provides the most comprehensive information on the townsite to date, and includes a complete inventory and history of all buildings, structures, and features, as well as detailed recommendations for restoration and maintenance of the park.

Archival documents regarding Fayette are available in several public archives in Michigan, such as the Michigan Technological University Library (Houghton), the Northern Michigan University Archives (Marquette), the Michigan Iron Industry Museum (Negaunee), the State Archives of Michigan (Lansing), the Fayette Historic State Park History Office (Fayette), the Delta County Historical Society (Escanaba), and the Garden Peninsula Historical Society (Garden).

Again, because Fayette is a historic state park, numerous historians and interns have compiled an immense amount of research in the past several decades, and much of it is on file at the Fayette Historic State Park History Office. This repository includes thousands of historical documents related to Fayette, as well as biographical files on nearly 1,400 of Fayette’s residents. Conveniently, many historical documents and oral histories have been transcribed, and other researchers have already tackled the time-consuming task of searching newspapers and public documents for references to Fayette and its residents. Also on file are transcribed company documents including rent and payroll records, butcher shop ledgers, and documents related to entertainment, voluntary associations, healthcare, church, and school services. The 1880 U.S. census is the only one available for the furnace-period occupation of Fayette (Department of the Interior 1880).

In addition, there is a rather unusual historical reference for Fayette. *Snail Shell Harbor* was an evangelical novel first published in 1870 and based on the author’s
recent visit to Fayette (Langille [1870] 2001). While the tone of the novel is purposefully moralistic and religious, the geographical descriptions of Fayette appear to accurately reflect the town in the late 1860s. Even one of the novel’s central characters, a tough sailor named Sandy, appears to be based on a real personality at Fayette. The novel offers an intriguing contemporary perspective on social and cultural interactions within an isolated company town.

Analysis of Landscape and Built Environment

For this volume, an analysis of Fayette’s landscape and built environment was guided by Foucaultian constructions of power and observation, and by Bourdieu’s concepts of habitus and the daily reproduction of identity through activities such as walking to one’s designated neighborhood (see Chap. 3). The analysis included a combination of photography, archival research, archaeology, and work with Geographic Information Systems (GIS).

GIS is a tool used to link data to geographic reference points, enabling the visual display of spatial data. For this work, historical-period and modern maps were digitized and georectified, linking features, buildings and structures to known points on modern maps. Modern geographic data used for constructing the maps include the National Geographic Dataset (USGS 2008) and various digitized maps (e.g., from SSOE and Quinn Evans Architects 1996). A geodatabase containing artifactual and architectural data was then used to link data to specific points within Fayette’s landscape. In addition, analysis employing 3D Analyst (ArcGIS) software provides a sense of historical viewsheds, taking into account, for example, vegetation patterns from circa 1886 (as reconstructed from historical photographs in SSOE and Quinn Evans Architects 1996) (see Chap. 6).

In addition, digital cameras recorded the landscape and built environment at Fayette, with particular attention to viewsheds, topography, spatial distributions of buildings, and architectural designs of workers’ housing. Archived historical maps of the town were critically analyzed with particular attention to topography and viewsheds. Archived blueprint drawings of residents’ housing provided data for comparing square footage and fenestration between neighborhoods. Historical descriptions of the buildings and landscape provide residents’ contemporary evaluations of their housing, and archaeological excavations demonstrate differing levels of industrial pollution in the neighborhoods.

Archaeological Research

The following paragraphs summarize selected archaeological research, organized by location within the townsite. In addition, archaeologists also have excavated a stock barn (Martin et al. 1993), the hotel’s locally famous two-story privy...
Research at Fayette (Pletka 1993), and other areas. The Michigan United Conservation Clubs retrieved a number of artifacts from Snail Shell Harbor in 1965 (Halsey 1994). These research efforts are not described here because they shed little light on neighborhood landscapes or household consumerism, which are two primary foci of this volume. Also excluded from this section is archaeological research on the prehistoric occupations in the area.

Town Road System

Archaeological excavations of Fayette’s road systems support the supposition that the town grew with the needs of the community, rather than being built as an idealized model. One project consisted of two trenches excavated to examine roadbeds in cross section (Halsey 1998; Halsey and James 1998). A trench was excavated adjacent to the northeast side of a stock barn on Sheldon Avenue near Slag Beach. Excavations revealed the furnace-period road surface as indicated by a layer of hard-packed dolomite, slag, glass, and nails, underlain by a prepared surface of slag fill nearly one foot thick. The lowest excavation level yielded saw-cut animal bones, indicating that the site had been in use for some time before the road system was formalized. Evidence suggests that the slag fill was limited to the roadbed preparation; deep, intentional slag deposits in this part of town are restricted to Slag Beach and roadbeds, rather than forming a continuous lens of fill between the beach and the working center of town. Another excavation of a roadbed near Slag Beach yielded nearly identical results (Halsey and Anderson 1996). Halsey suggests the "road-right-of-way was probably an ‘ideal’ construct and that traffic – wagon, buggy, and foot – went pretty much wherever it wanted or needed to go without any great concern for rigid road margins” (Halsey 1998:5). He further points out that none of the furnace-period roads in the town has formal boundaries or curbs.

Racetrack/Baseball Field

A crew from Michigan’s Office of the State Archaeologist conducted an excavation of Fayette’s racetrack and baseball field, which overlapped each other (Halsey 1999a, b; Mead and Halsey 1999). This feature is discussed in detail in Chap. 8 of this volume.

Slag Beach

In 1996, the Office of the Michigan State Archaeologist conducted test excavations near a small stock barn and the foundations of a house near Slag Beach. Test units revealed “a fairly impressive sheet midden (0.6 foot thick) containing slag, nails, window glass, container glass, building hardware, ceramics, and animal bone” (Halsey and Anderson 1996:1). At this time, other test units were placed near
a historical-period access road near a larger stock barn adjacent to Slag Beach. The excavations demonstrated that the original ground surface of beach cobbles was overlain by humus with “a few” historical artifacts including nails, window glass, and animal bone (Halsey and Anderson 1996:1). Overlying the humus were slag deposits that varied in thickness, probably due to the use of slag as fill, and then an upper level of humus and sod.

Residential Excavations

In the mid-1970s, Stone (1974) conducted the first professional archaeology at the townsite, in order to provide the Michigan Department of State with an assessment of the site. He was the first to systematically compare historical maps with extant buildings and structures, foundations, artifact concentrations, and other features. He followed this research with test excavations across the site designed to explore a variety of domestic, industrial, and commercial contexts. Stone commented on the utilitarian nature of the domestic artifacts he found; he expressed his surprise at the apparent lack of high-quality items he assumed high-status individuals (e.g., skilled tradesmen) would possess.

The superintendent was the town’s highest-ranking company official in residence. Exploration of the landscape surrounding the superintendent’s house has been a byproduct of excavations for other purposes. Archaeologists excavated several test pits in the superintendent’s yard to provide clearance for reconstructing the house’s front porch and to test a prehistoric occupation discovered in the vicinity (Halsey 1986; Halsey and Mead 1986). Excavations along the house’s foundation revealed an uppermost level dense with architectural debris and artifacts most likely dating to the postfurnace occupation. Lower levels included comparatively fewer historical-period artifacts. Apparently, the superintendents’ families kept the front yard cleaner than later renters and tourists did. Test pits to the south (front) and east of the house showed a lens of slag fill overlying historical-period artifacts, while other parts of the yard closer to the house were relatively slag-free (Halsey and Murphy 1986). Without more research, it is not possible to assess whether the slag was deposited during the furnace period or later, though the second possibility is more likely considering the stratigraphy. While reconstructing the yard’s fence, archaeologists discovered a curved flagstone drive on the west side of the house, and limestone paved walkways leading from the south and front porches; these are believed to be the only paved surfaces at Fayette (Halsey 1987). While the walkways appear to be contemporary with the furnace period, Halsey (1994) suggests that the driveway is probably later.

Excavations in front of a middle-class residence on Stewart Avenue revealed a relatively low density scatter of historic artifacts; most were architectural debris probably resulting from repairs to the house over its lifetime. The excavation notes do not mention the presence of slag or other furnace waste (Halsey 1997).

By contrast, the working-class neighborhood was extremely polluted with industrial waste (Cowie 1996; Halsey 2002; Martin 1987a). For example, a reconnaissance survey and limited test excavations in the working-class neighborhood
revealed the presence of numerous depressions representing cabins that have yet to be fully documented or excavated (Halsey 2002). The excavation notes describe this area as having high density deposits of charcoal, artifacts, and slag, indicating a domestic sheet midden mixed with industrial waste products.

In 1986, Patrick Martin of Michigan Technological University excavated two log cabins in the laborer’s neighborhood near Slag Beach (Martin 1987a). He found that the small cabins were constructed of rounded pine logs, chinked with mortar. The houses’ yards consisted of a dense sheet midden of domestic and industrial refuse; slag and charcoal had been heaped around the cabins for insulation against lakeshore winds. This was followed by an analysis of butchered animals bones from the sheet midden (Martin 1987b), and an analysis of the cabins’ history and architecture for the purposes of reconstructing a cabin for public interpretation (Friggens 1989).

Comparative Excavations of Class-Based Neighborhoods

The author’s archaeological research provides the primary basis for comparing consumer behavior in Fayette’s class-based neighborhoods (Cowie 1996, 2008). Test units were laid out to sample domestic refuse associated with three neighborhoods representing Fayette’s presumed economic groups: upper class, middle class, and working class (Fig. 2.2). Excavations explored one large privy vault behind the town superintendent’s family residence in the upper-class neighborhood, two privies behind a house in the middle-class neighborhood, and sheet midden and other features in the working-class neighborhood. Several excavation units were opened to expose the privy feature located behind the superintendent’s house, including units 95-13-1, 2, 3, 4, 5, and 6. The unit, eventually designated as 95-13-6, bisected the privy and was excavated to bedrock, with a portion of the privy left in situ. Two units were opened in middle-class neighborhood, 95-14-1 and 95-14-2. Each unit bisected a privy, and both were excavated to solid bedrock. Units in the working-class neighborhood included units 95-15-1 (a midden-filled depression), 95-15-4 (a cold-storage feature), and 95-15-3x, which was an extension of a unit opened in the 1986 excavations of two laborers’ cabins (Martin 1987a). The purpose of this unit was to clean up part of a test unit wall from that previous excavation that had begun to slump.

Artifacts from those excavations were categorized according to South’s (1977) classification scheme for historical-period artifacts and entered into an Access database. South’s system is based on functional divisions of artifacts. Items used largely in the kitchen or associated with food preparation or consumption are assigned to the Kitchen group; architectural items such as window glass and nails are in the Architectural group, and so forth. Here, functional categories are not used as part of pattern recognition research as South did; categories are only used for general presentation of results. Artifacts with potential to inform on social and economic power (e.g., ceramics, glass vessels, and personal artifacts) were analyzed in greater detail than items with little connection to household consumer choices (e.g., nails).
Nearly 18,000 ($N=17,825$) artifacts were analyzed from the combined excavations of the superintendent’s privy, two middle-class privies, and three midden-filled test units from the working-class neighborhood. This number excludes faunal and botanical remains, which are discussed below. Most artifacts date to the furnace-period occupation of the site, with the exception of the upper levels of some units, which are minimally contaminated by later artifacts.
Research at Fayette

Artifacts from these chronologically mixed proveniences were excluded, resulting in 14,029 artifacts for the remainder of analysis. The table above presents relative frequencies of artifacts in functional groups for each neighborhood; excavation units in each neighborhood have been combined to provide a generalized view of artifact patterns between the neighborhoods (Table 2.1).

The same functional types of objects were being deposited in both privies and yard middens, and they appear in roughly the same frequencies in the three neighborhoods. If nothing else, this organization into functional categories shows that though artifacts were recovered from two different types of disposal practices (in privy and yard refuse), comparison of artifacts between these areas is valid. Furthermore, the artifacts in all three areas reflect what South (1977) called the “frontier” pattern, also noted in earlier excavations of two laborer’s cabins (Martin 1987a). The characteristics of the frontier pattern include a relatively even percentage of items in both the kitchen group and the architecture group, which, combined, make up about 80% of the total collection. The third largest category is the activities group, and the rest are very small. Fayette’s faunal collection from these excavations included 8,029 specimens (Cowie 1996). The faunal analysis rests mainly on a comparison of relative frequency of identified fragments and minimum number of individuals between neighborhoods.

Separate contractors analyzed soil samples from each of the three neighborhoods for botanical remains and parasite analysis. Kathryn Egan-Bruhy and Jeanne Nelson of Commonwealth Cultural Resources Group (CCRG) conducted botanical analysis (Egan-Bruhy 2005). They analyzed 16 flotation samples from the three neighborhoods with an emphasis on identifying subsistence and medicinal remains. While CCRG floated some samples, a number of samples in previous years had been floated without recorded volumetric data. Thus, in the absence of volumetric data, botanical analysts simply noted presence or absence of the taxa. Parasite analysis was conducted by Faulker and Mayes of the University of Tennessee and presented in earlier publications (Cowie 1996; Falkner and Mayes 1996; Faulker et al. 2000). Eleven soil samples representing the three neighborhoods were analyzed for evidence of human parasitic infection.

<table>
<thead>
<tr>
<th>Functional group</th>
<th>Upper class</th>
<th>Middle class</th>
<th>Working class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Kitchen</td>
<td>1,793</td>
<td>60.4</td>
<td>1,932</td>
</tr>
<tr>
<td>Architecture</td>
<td>515</td>
<td>17.3</td>
<td>2,774</td>
</tr>
<tr>
<td>Furniture</td>
<td>3</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>Arms</td>
<td>11</td>
<td>0.4</td>
<td>6</td>
</tr>
<tr>
<td>Clothing</td>
<td>113</td>
<td>3.8</td>
<td>83</td>
</tr>
<tr>
<td>Personal</td>
<td>251</td>
<td>8.4</td>
<td>131</td>
</tr>
<tr>
<td>Tobacco</td>
<td>1</td>
<td>0.0</td>
<td>10</td>
</tr>
<tr>
<td>Activities</td>
<td>284</td>
<td>9.6</td>
<td>1,373</td>
</tr>
<tr>
<td>Total</td>
<td>2,971</td>
<td>100.0</td>
<td>6,311</td>
</tr>
</tbody>
</table>

Table 2.1 Relative frequencies of artifacts in functional groups per neighborhood
Summary

Fayette was a geographically isolated town whose sole purpose was to smelt iron. It is generally representative of company towns in Victorian America, and its workforce experienced many of the same relationships to industrial technology and bureaucratic management as other employees immersed in industrial capitalism elsewhere. Its residents were also immersed in broader ideologies surrounding mass consumerism, morality, and proper work ethics. Residents of company towns like Fayette experienced corporate paternalism in most aspects of their lives, because residents relied on the company for nearly all their goods and services. Archaeologists, historians, and land managers have generated a tremendous amount of research on Fayette Historic State Park. Much of that research is synthesized in this volume with respect to power relations in industrial capitalism.
The Plurality of Power
An Archaeology of Industrial Capitalism
Cowie, S.
2011, X, 210 p., Hardcover
ISBN: 978-1-4419-8305-3