Contents

1 Classical Thermodynamics .. 1
 1.1 Equilibrium Thermodynamics .. 1
 1.2 Dissociation Equilibrium .. 5
 1.3 Ionization Equilibrium ... 8
 1.4 Dissociation and Ionization Equilibria: Coupled Solution 11
 1.5 Ideal Gas Thermodynamics ... 13
 1.5.1 Ideal Gas Mixture Enthalpy 14
 1.5.2 Ideal Gas Mixture Heat Capacity 15
 1.6 Single Species Enthalpy ... 16
 1.6.1 Equipartition Theorem 17
 1.7 Mixture Thermodynamics at Constant Pressure 19
 1.7.1 Dissociation ... 19
 1.7.2 Ionization .. 21
 1.8 Mixture Thermodynamics at Constant Volume 22
 1.9 The Isentropic Coefficient 26
 1.9.1 Dissociation Regime 28
 1.9.2 Ionization Regime 29
 1.9.3 Hydrogen Plasma ... 31
 1.10 Real Gas Thermodynamics 32
 1.10.1 Virial Corrections to Thermodynamic Functions 34
 1.10.2 Virial Corrections to Heat Capacity 36

2 Two and Three Level Systems: Toward the Understanding
 of the Thermodynamics of Multilevel Systems 39
 2.1 Two-Level Systems ... 39
 2.2 Three-Level Systems ... 42
 2.3 Few-Level Model Accuracy 47

3 Statistical Thermodynamics ... 51
 3.1 From Statistical Probability to Thermodynamic Functions 51
 3.2 Statistical Mean ... 57
 3.3 Multicomponent Ideal Systems 58
4 Atomic Partition Function

4.1 Atomic Structure ... 61
 4.1.1 Nuclear Partition Function 61
 4.1.2 Translational Partition Function 62
 4.1.3 Internal Partition Function 65

4.2 Single Species Thermodynamics 65
 4.2.1 Translational Contribution 65
 4.2.2 Internal Contribution 68
 4.2.3 The Atomic Hydrogen as a Case Study 70

4.3 The Saha Equation for Ionization Equilibrium 74

4.4 Plasma Thermodynamics .. 76

5 Molecular Partition Function: Vibrational, Rotational and Electronic Contributions

5.1 The Harmonic Oscillator .. 79

5.2 The Rigid Rotor .. 81

5.3 Molecular Partition Function: Beyond Closed Forms 86
 5.3.1 Ro-Vibrational Energies 87

5.4 Polyatomic Molecular Partition Functions 95

6 Real Effects: I. Debye-Hückel

6.1 Debye–Hückel Theory .. 101

6.2 Debye–Hückel Corrections .. 103
 6.2.1 Internal Energy ... 103
 6.2.2 Helmholtz Free Energy 104
 6.2.3 Pressure ... 105
 6.2.4 Entropy, Enthalpy and Gibbs Free Energy 106
 6.2.5 Heat Capacity .. 106
 6.2.6 Chemical Potential and Equilibrium Constant 107
 6.2.7 Lowering of the Ionization Potential 108

6.3 The Effects of Debye–Hückel Correction 109

6.4 Beyond Debye–Hückel Theory 113

7 Real Effects: II. Virial Corrections

7.1 Ensembles and Partition Functions 117
 7.1.1 The Micro-Canonical Ensemble 118
 7.1.2 The Canonical Ensemble 119
 7.1.3 The Grand-Canonical Ensemble 119

7.2 Virial Expansion for Real Gases 120
 7.2.1 The Virial Coefficient for Mixtures 126

7.3 Virial Coefficient Calculations 130
 7.3.1 Phenomenological Potential 130
 7.3.2 Open Shells Interactions 131

7.4 The REMC Method .. 132
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Electronic Excitation and Thermodynamic Properties of Thermal Plasmas</td>
<td>141</td>
</tr>
<tr>
<td>8.1</td>
<td>Cutoff Criteria</td>
<td>141</td>
</tr>
<tr>
<td>8.1.1</td>
<td>The Ground State Method</td>
<td>142</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Debye–Hückel Criteria</td>
<td>142</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Fermi Criterion</td>
<td>143</td>
</tr>
<tr>
<td>8.2</td>
<td>Cutoff From the Schrödinger Equation</td>
<td>144</td>
</tr>
<tr>
<td>8.3</td>
<td>Case Study: Oxygen</td>
<td>147</td>
</tr>
<tr>
<td>8.4</td>
<td>Partition Function and Occupation Probability</td>
<td>158</td>
</tr>
<tr>
<td>8.5</td>
<td>Debye–Hückel Energy Levels</td>
<td>161</td>
</tr>
<tr>
<td>9</td>
<td>Multi-Temperature Thermodynamics: A Multiplicity of Saha Equations</td>
<td>163</td>
</tr>
<tr>
<td>9.1</td>
<td>General Considerations</td>
<td>163</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Minimization of Gibbs Free Energy</td>
<td>166</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Maximization of Entropy</td>
<td>167</td>
</tr>
<tr>
<td>9.2</td>
<td>Free Energy Minimization for Atomic Ionization</td>
<td>168</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Case a: $T_h = T_{int} \neq T_e$</td>
<td>168</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Case b: $T_h \neq T_{int} = T_e$</td>
<td>170</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Case c: $T_h \neq T_{int} \neq T_e$</td>
<td>170</td>
</tr>
<tr>
<td>9.3</td>
<td>Entropy Maximization for Atomic Ionization</td>
<td>171</td>
</tr>
<tr>
<td>9.4</td>
<td>Multitemperature Dissociation</td>
<td>172</td>
</tr>
<tr>
<td>9.5</td>
<td>Diatom Two-Temperature Ionization</td>
<td>173</td>
</tr>
<tr>
<td>9.6</td>
<td>Two-Temperature Hydrogen Plasma</td>
<td>175</td>
</tr>
<tr>
<td>10</td>
<td>Thermodynamics of Planetary Plasmas</td>
<td>181</td>
</tr>
<tr>
<td>10.1</td>
<td>Basic Equations</td>
<td>181</td>
</tr>
<tr>
<td>10.2</td>
<td>Air Plasmas</td>
<td>184</td>
</tr>
<tr>
<td>10.3</td>
<td>Thermodynamic Properties of High-Temperature Mars-Atmosphere Species</td>
<td>202</td>
</tr>
<tr>
<td>10.4</td>
<td>Thermodynamic Properties of High-Temperature Jupiter-Atmosphere Species</td>
<td>217</td>
</tr>
<tr>
<td>A</td>
<td>Spectral Terms for Atoms and Molecules</td>
<td>231</td>
</tr>
<tr>
<td>A.1</td>
<td>Atomic Electronic Terms</td>
<td>231</td>
</tr>
<tr>
<td>A.1.1</td>
<td>Calculation of L</td>
<td>232</td>
</tr>
<tr>
<td>A.1.2</td>
<td>Calculation of S</td>
<td>232</td>
</tr>
<tr>
<td>A.1.3</td>
<td>Calculation of J</td>
<td>233</td>
</tr>
<tr>
<td>A.2</td>
<td>Complete Sets of Electronic Levels</td>
<td>237</td>
</tr>
<tr>
<td>A.2.1</td>
<td>Helium</td>
<td>238</td>
</tr>
<tr>
<td>A.2.2</td>
<td>Oxygen</td>
<td>239</td>
</tr>
<tr>
<td>A.3</td>
<td>Beyond the Hydrogenoid Approximation</td>
<td>241</td>
</tr>
<tr>
<td>A.4</td>
<td>Electronic Terms of Diatomic Molecules</td>
<td>243</td>
</tr>
<tr>
<td>A.4.1</td>
<td>H_2 Molecule</td>
<td>244</td>
</tr>
<tr>
<td>A.4.2</td>
<td>N_2 Molecule</td>
<td>246</td>
</tr>
<tr>
<td>A.4.3</td>
<td>N_2^+ Molecule</td>
<td>249</td>
</tr>
</tbody>
</table>
B Tables of Partition Function of Atmospheric Species 251
 B.1 Partition Functions Independent of the Pressure 251
 B.2 Selfconsistent Partition Functions of Atomic Species
 in Air Atmosphere .. 261
 B.3 Selfconsistent Partition Functions of Atomic Species
 in Mars Atmosphere ... 271
 B.4 Selfconsistent Partition Functions of Atomic Species
 in Jupiter Atmosphere .. 290
C Constants .. 293
 C.1 Conversion Factors ... 293
References ... 295
Index ... 303
Fundamental Aspects of Plasma Chemical Physics
Thermodynamics
Capitelli, M.; Colonna, G.; D'Angola, A.
2012, XVIII, 310 p., Hardcover