Contents

1 Introduction to the Problems of Relaxation and Diffusion in Complex Systems 1
 1.1 Historical Perspective .. 1
 1.2 Relaxation and Diffusion .. 12
 1.2.1 Macroscopic Description of Dynamics: Time- and Frequency-Dependent Mechanical Properties 14
 1.2.1.1 Shear Creep and Recovery 14
 1.2.1.2 Shear Stress Relaxation 15
 1.2.1.3 Dynamic Shear Modulus 16
 1.2.1.4 Dynamic Shear Compliance 17
 1.2.1.5 Tensile (Bulk, Longitudinal) Compliance and Tensile (Bulk, Longitudinal) Modulus 19
 1.2.2 Macroscopic Description of Dynamics: Time- and Frequency-Dependent Dielectric Properties 20
 1.2.2.1 Dielectric Permittivity 20
 1.2.2.2 Electric Modulus ... 21
 1.2.3 Macroscopic Description: Spectroscopy Based on Other Variables 22
 1.2.3.1 Heat Capacity Spectroscopy 22
 1.2.3.2 Spectroscopy Based on Other Macroscopic Dynamic Variables 23
 1.3 Molecular Description of Dynamics in the Linear Response Regime 24
 1.3.1 Dielectric Relaxation 29
 1.3.2 Light Scattering .. 33
 1.3.3 Nuclear Magnetic Resonance 34
 1.3.4 Neutron Scattering 35
 1.3.5 The Green–Kubo Relation Between Transport Coefficients and Time Correlation Functions 37
 1.3.6 The Fluctuation–Dissipation Theorem 39
 1.4 Obstacles of Progress in Finding a Solution ... 40
1.4.1 An Unsolved Many-Body Problem ... 40
1.4.2 Plethora of Experimental Facts: Anomalies are the Real Guides to Solution ... 41
1.4.3 An Interdisciplinary Research Area: Downside and Upside 44
 1.4.3.1 The Downside ... 44
 1.4.3.2 The Upside ... 45
1.5 Universal (Anomalous) Properties: The Outstanding Guides to Solution of the Problem .. 46

2 Glass-Forming Substances and Systems ... 49
 2.1 Current Status of the Glass Transition Problem 49
 2.2 General Properties and Anomalies .. 50
 2.2.1 Non-exponential Time Correlation Function of the Structural α-Relaxation, $\exp[-(t/\tau_\alpha)^{1-n}]$, the Kohlrausch Stretched Exponential Function 52
 2.2.1.1 Crossover of Correlation Function from $\exp(-t/\tau_0)$ to $\exp[-(t/\tau)^{1-n}]$ at t_c, a Temperature-Insensitive Time 63
 2.2.1.2 Crossover of Temperature Dependence of Viscosity at High Temperatures ... 70
 2.2.1.3 A Relation Between Primitive Relaxation Time and Many-Body Relaxation Time Resulting from the Crossover at t_c (the Coupling Model) 73
 2.2.2 Length Scale and Dynamic Heterogeneous Nature of the Structural Relaxation ... 88
 2.2.2.1 Length Scale from the Free Volume Model 88
 2.2.2.2 Length Scale from the Configuration Entropy Model 88
 2.2.2.3 Length Scale from the Thermodynamic Fluctuation Theory 95
 2.2.2.4 Dynamic Heterogeneity and Its Length Scale 96
 2.2.2.5 Length Scale from Relaxation Behavior of Nanophase-Separated Side-Chain Polymers 108
 2.2.2.6 Length Scale from Nanoconfinement 112
 2.2.2.7 Length Scale from Multi-point Dynamical Susceptibilities 118
 2.2.2.8 Length Scale Is Not Practical to Use as Measure of Many-Body Dynamics 123
 2.2.2.9 Why Fixation on the Length Scale of the α-Relaxation, and Disregard of the Width of the Dispersion? 125
 2.2.3 T_g-Scaled Temperature Dependence of η or τ_α and the Steepness or “Fragility” Index ... 127
2.2.3.1 The T_g-Scaled Plot of η by Oldekop–Laughlin–Uhlmann–Angell 127
2.2.3.2 The Steepness or “Fragility” Index .. 129
2.2.3.3 Isobaric Fragility m_P Decreases with Increasing Pressure 132
2.2.3.4 The Isochoric “Fragility” m_V Is Significantly Less Than the Isobaric “Fragility” m_P .. 132
2.2.3.5 Correlation Between Kinetic “Fragility” and Thermodynamic “Fragility”? 133
2.2.3.6 Correlation of Kinetic “Fragility” with Other Quantities? 140
2.2.3.7 Different Patterns of Change of m with the Molecular Weight M of Polymers 141
2.2.3.8 Breakdown of Correlation Between m and n 141
2.2.3.9 Restoration of Correlation Between m and n When Restricted to the Same Family . 144
2.2.3.10 Colloidal Suspension of Soft Spherical Particles: Proving Non-exponentiality (n) and Fragility (m) Are Parallel Consequences of Inter-particle Interaction 146

2.2.4 Invariance of the α-Dispersion to Various Combinations of T and P While Keeping τ_α Constant 150
2.2.4.1 Molecular Glassformers .. 152
2.2.4.2 Amorphous Polymers .. 157
2.2.4.3 Ionic Liquids .. 161
2.2.4.4 Pharmaceutical and Saccharides 162
2.2.4.5 Invariance of the α-Dispersion to Different T and P Combinations at Constant τ_α Investigated by Other Techniques than Dielectric Spectroscopy 164
2.2.4.6 The α-Dispersion of a Component in Binary Polymer Blends Is Invariant to T and P When τ_α Is Constant 165
2.2.4.7 The α-Dispersion of a Component in Mixtures of Two Small Molecular Glassformers Is Invariant to T and P When τ_α Is Constant 166
2.2.4.8 Impact on Theory by T–P Superpositioning of the α-Dispersion at Constant τ_α 168

2.2.5 Other Structural Relaxation Properties Either Governed by or Correlated with the Dispersion of the α-Relaxation .. 170
2.2.5.1 Failure of a Single Vogel–Fulcher–
Tamman–Hesse (VFTH) Expression
to Describe the Temperature
Dependence of $\tau_\alpha(T)$ 171
2.2.5.2 The $Q^{-2/(1-n)}$-Dependence of τ_α 193
2.2.5.3 Non-linear Enthalpy Relaxation of
Glassformers Near and Below T_g 195
2.2.5.4 Correlation Between n and Aging Time 201
2.2.5.5 The Effect of Shear on the Non-
equilibrium Structural Dynamics of an
Aging Colloidal Suspension of Laponite 205
2.2.5.6 Breakdown of the
Stokes–Einstein Equation
and the Debye–Stokes–Einstein
Relation .. 206
2.2.5.7 Changes Effected by Mixing with
Another Glassformer 232
2.2.5.8 Decrease of Relaxation Time by
Nanoconfinement 247
2.2.5.9 Breakdown of Thermorheological
Simplicity of Relaxation Mechanisms
of Different Time/Length Scales, and
Viscoelastic Anomalies of Polymer:
Degree Depends on n 251
2.2.5.10 Non-linear Deformation of Amorphous
Polymers .. 267
2.3 A Fundamentally Important Class of Secondary Relaxations ... 272
2.3.1 Background .. 272
2.3.2 The Important Class of Secondary Relaxations That
Are Well Connected to the Primary α-Relaxation:
The Johari–Goldstein β-Relaxations 277
2.3.2.1 Correlation Between the Ratio $\tau_\alpha/\tau_{\text{JG}}$
and n at a Predetermined Value of τ_α 278
2.3.2.2 Good Correspondence Between τ_{JG} and
the Primitive Relaxation Time τ_0 at
Ambient Pressure 285
2.3.2.3 Excess Loss over the Kohlrausch Fit of
the α-Relaxation, or the Excess Wing 301
2.3.2.4 Excess Wing (Unresolved JG
β-Relaxation) Eclipsed by the γ-Relaxation ... 306
2.3.2.5 Encroachment of the JG β-Relaxation
Toward the γ-Relaxation: The Cause
of the Purported Observation of
Anomalous T-Dependence of τ_γ 312
2.3.2.6 Removing the Confusion Caused by the Interpretation of the Excess Wing (EW) of Others .. 318
2.3.2.7 Digression on NCL .. 324
2.3.2.8 τ_{JG} Like τ_a Is Pressure Dependent, and Co-invariance of n and τ_a/τ_{JG} at Constant τ_a .. 327
2.3.2.9 From Causality: Dependence of τ_a on T, P, V, and S Originates from That of τ_0 (or τ_{JG}) .. 345
2.3.2.10 Systematic Increase of the Ratio τ_a/τ_{JG} (or τ_a/τ_0) of a Glassformer A (by Increase of n) on Mixing with Increasing Concentration of a Less Mobile Glassformer B .. 345
2.3.2.11 Increase of the Ratio τ_a/τ_{JG} (or τ_a/τ_0) on Polymerizing or Cross-Linking a Glassformer (by Increase of n) 358
2.3.2.12 Systematic Decrease of the Ratio τ_a/τ_{JG} (or τ_a/τ_0) of a Glassformer A (by Decrease of n) on Mixing with Increasing Concentration of a More Mobile Glassformer B .. 359
2.3.2.13 Systematic Increase of the Ratio τ_a/τ_{JG} (or τ_a/τ_0) on Increasing the Molecular Weight of Polymers, Constancy of τ_{JG} or τ_0 .. 362
2.3.2.14 Changing the Ratio τ_a/τ_{JG} (or τ_a/τ_0) by Change in Tacticity of Polymers, Constancy of τ_{JG} or τ_0 .. 363
2.3.2.15 Change of T-Dependence of τ_{JG} on Crossing T_g .. 364
2.3.2.16 Doubt on the Universal Presence of the JG β-Relaxation? Glassformers Only Showing a Non-JG Secondary Relaxation 380
2.3.2.17 Change of T-Dependence of Relaxation Strength $\Delta \varepsilon_{\text{JG}}$ on Crossing T_g .. 395
2.3.2.18 Correlation of JG β-Relaxation with α-Relaxation: Evidence from Spin-Lattice Relaxation Weighted Stimulated-Echo Spectroscopy 398
2.3.2.19 JG β-Relaxation in the Glassy State, like the α-Relaxation, Is Sensitive to Thermodynamic (T,P) Path, Thermal History, and Annealing 399
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2.20</td>
<td>Increase of τ_β on Aging in Some Glassformers</td>
<td>405</td>
</tr>
<tr>
<td>2.3.2.21</td>
<td>JG Relaxation Responsible for Structural Change Deep in the Glassy State by Aging</td>
<td>408</td>
</tr>
<tr>
<td>2.3.2.22</td>
<td>JG β-Relaxation Governs the Rate of Crystal Nucleation, the Initial Process of Crystallization</td>
<td>412</td>
</tr>
<tr>
<td>2.3.2.23</td>
<td>JG β-Relaxation in Pharmaceuticals</td>
<td>421</td>
</tr>
<tr>
<td>2.3.2.24</td>
<td>Relation Between the Arrhenius Activation Energies of τ_α and τ_{JG} in the Glassy State</td>
<td>430</td>
</tr>
<tr>
<td>2.3.2.25</td>
<td>Aging of the JG β-Relaxation Used to Probe Structural Relaxation in the Glassy State</td>
<td>432</td>
</tr>
<tr>
<td>2.3.2.26</td>
<td>The Carbohydrates, Monosaccharides, Disaccharides, and Polysaccharides</td>
<td>434</td>
</tr>
<tr>
<td>2.3.2.27</td>
<td>JG β-Relaxation (or Primitive Relaxation) of Water</td>
<td>442</td>
</tr>
<tr>
<td>2.3.2.28</td>
<td>Hydrated Proteins</td>
<td>474</td>
</tr>
<tr>
<td>2.3.2.29</td>
<td>TV'-Dependence of τ_{JG}</td>
<td>528</td>
</tr>
<tr>
<td>2.3.2.30</td>
<td>Invariance of the Primitive Relaxation Time, τ_0, to Variations of P and T While Keeping τ_α Constant Deduced from the Same Observed on the Normal Mode Relaxation Time, τ_n, of Type-A Polymers</td>
<td>543</td>
</tr>
<tr>
<td>2.3.2.31</td>
<td>TV'-Dependence of the Primitive Relaxation Time, τ_0, Same as that of the Normal Mode Relaxation Time, τ_n, of Type-A Polymers</td>
<td>546</td>
</tr>
<tr>
<td>2.3.2.32</td>
<td>Calorimetric Detection of JG Relaxation</td>
<td>548</td>
</tr>
<tr>
<td>2.3.2.33</td>
<td>JG β-Relaxation Causes Cage Decay and Terminates the NCL</td>
<td>550</td>
</tr>
<tr>
<td>2.3.2.34</td>
<td>Change of T-Dependence of NCL at T_g in Analogy to the JG β-Relaxation Strength</td>
<td>559</td>
</tr>
<tr>
<td>2.3.2.35</td>
<td>Correlation Between the Level of NCL at T_g and $n(T_g)$</td>
<td>562</td>
</tr>
<tr>
<td>2.3.2.36</td>
<td>Fast Relaxation (NCL) Senses the Hole Volume from PALS</td>
<td>569</td>
</tr>
<tr>
<td>2.3.2.37</td>
<td>Comparison of the MCT Description of Caged Dynamics with NCL</td>
<td>573</td>
</tr>
<tr>
<td>2.3.2.38</td>
<td>Conversion of α-Relaxation to the JG β-Relaxation or Primitive Relaxation by Suppression of Cooperativity</td>
<td>587</td>
</tr>
<tr>
<td>2.3.2.39</td>
<td>Connection Between the Fast Primitive Relaxation and the Slow Structural Relaxation of Aging Colloidal Suspension of Laponite</td>
<td>610</td>
</tr>
</tbody>
</table>
2.3.2.40 Which Criteria Are Most Critical for Identification of the Johari–Goldstein \(\beta \)-Relaxation? .. 611

2.3.2.41 Broadening of \(\alpha \)-Relaxation and Concomitant Increase of Separation from the JG \(\beta \)-Relaxation in Glycerol and Threitol at Elevated Pressure 619

2.3.2.42 Narrowing of \(\alpha \)-Relaxation and Concomitant Decrease of Separation from the JG \(\beta \)-Relaxation at Elevated Pressure .. 622

2.3.2.43 JG \(\beta \)-Relaxation of Aqueous Mixture Under High Pressure: Water–Propylene Glycol Oligomer Mixtures 625

2.3.2.44 JG \(\beta \)-Relaxation of Aqueous Mixture Under High Pressure: Water–Fructose Mixtures 628

2.3.2.45 Evidences of Primitive or \(\beta \)-Relaxation and Faster Relaxation Are Responsible for the Stabilization of Dried Protein in Sugar-Based Glass 628

3 Universal Properties of Relaxation and Diffusion in Interacting Complex Systems .. 639

3.1 Introduction ... 639

3.2 Universal Properties 642

3.2.1 The Kohlrausch Stretched Exponential Correlation Function \(\exp[-(t/\tau)^{1-n}] \) ... 642

3.2.1.1 Mean-Square Displacement of Diffusion in Interacting Systems 643

3.2.1.2 Space-Time Pictures of Motions of Li\(^+\) Ions Equivalent to Those of Motions of Colloidal Particles by Confocal Microscopy .. 650

3.2.1.3 Support from Conductivity Relaxation Data of Crystalline, Glassy, and Molten Ionic Conductors 653

3.2.2 Stronger Interaction/Constraints Lead to Larger \(n \) 656

3.2.2.1 Ionically Conducting Systems 656

3.2.2.2 Entangled Polymer Chains 657

3.2.2.3 Semidilute Polymer Solutions and Associating Polymer Solutions 657

3.2.2.4 Junction Dynamics of Cross-Linked Polymers 658

3.2.3 Crossover from \(\exp-(t/\tau_0) \) to \(\exp-[t(t/\tau)^{1-n}] \) at \(t_c \) 658

3.2.3.1 Ionically Conducting Systems 658

3.2.3.2 Entangled Polymer Chains 670

3.2.3.3 Colloidal Suspensions 671

3.2.3.4 Semidilute Polymer Solutions 673
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3.5</td>
<td>Polymeric Cluster Solutions</td>
<td>673</td>
</tr>
<tr>
<td>3.2.3.6</td>
<td>Associating or Aggregating Polymer Solutions</td>
<td>674</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Anomalous $Q^{-2/(1-n)}$ Dependence of τ</td>
<td>675</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Different Correlation Functions of the Same Relaxation Can Have Different Kohlrausch Exponents (1– n), Relaxation Times τ, and T-Dependences</td>
<td>679</td>
</tr>
<tr>
<td>3.2.5.1</td>
<td>Glassy Ionic Conductors: Conductivity vs. NMR</td>
<td>680</td>
</tr>
<tr>
<td>3.2.5.2</td>
<td>Entangled Polymer Chains: Self-Diffusion vs. Viscosity</td>
<td>689</td>
</tr>
<tr>
<td>3.2.5.3</td>
<td>Semidilute Polymer Solutions</td>
<td>694</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Recovering or Discovering the Primitive Relaxation</td>
<td>697</td>
</tr>
<tr>
<td>3.2.6.1</td>
<td>Influence of Mesophase Structures on the β-Relaxation in Side-Chain Liquid Crystal Polymers (SCLCPs)</td>
<td>699</td>
</tr>
<tr>
<td>3.2.6.2</td>
<td>Dynamics of Cross-Linked Junction of a Polymer Network</td>
<td>703</td>
</tr>
<tr>
<td>3.2.6.3</td>
<td>Cooperative Oxygen Ion Dynamics in Gd2Ti${2-y}$Zr$_y$O$_7$</td>
<td>709</td>
</tr>
<tr>
<td>3.2.6.4</td>
<td>The Crystalline Lithium Ionic Conductor Li${3x}$La${2/3-x}$TiO$_3$ (LLTO)</td>
<td>711</td>
</tr>
<tr>
<td>3.2.6.5</td>
<td>The Crystalline Lithium Ion Conductor Li${1.2}$Ti${1.8}$Al$_{0.2}$(PO$_4$)$_3$</td>
<td>714</td>
</tr>
<tr>
<td>3.2.6.6</td>
<td>Ionic Conductivity of Nanometer Thin Films of Yttria-Stabilized Zirconia</td>
<td>715</td>
</tr>
<tr>
<td>3.2.6.7</td>
<td>Activation Energy of the Snoek–Köster Relaxation in Cold-Worked, Body-Centered Cubic Metals</td>
<td>718</td>
</tr>
<tr>
<td>3.2.6.8</td>
<td>Precipitates in Al–Ag Alloys, Ta–H, and Ti–H Systems</td>
<td>721</td>
</tr>
<tr>
<td>3.2.6.9</td>
<td>Grain Boundary Relaxation</td>
<td>722</td>
</tr>
<tr>
<td>3.2.6.10</td>
<td>Conformational Transition Energy Barrier of Polymers</td>
<td>722</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Changes Effected by Mixing or Interfacing</td>
<td>722</td>
</tr>
<tr>
<td>3.2.7.1</td>
<td>Global Chain Dynamics of Each Component in Binary Polymer Blends</td>
<td>723</td>
</tr>
<tr>
<td>3.2.7.2</td>
<td>Other Examples of Change of Global Chain Dynamics of Entangled Polymers by Mixing</td>
<td>727</td>
</tr>
<tr>
<td>3.2.7.3</td>
<td>Mixed Alkali Effect in Ionic Conductors</td>
<td>728</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Evidence of Ion Transport Governed by Ion–Ion Interaction from Molecular Dynamics Simulation</td>
<td>736</td>
</tr>
</tbody>
</table>
3.2.9 Haven Ratio, Breakdown of Nernst–Einstein Relation: Analogue of Breakdown of Stokes–Einstein Relation 737
3.2.9.1 The Haven Ratio for Mixed Alkali Glass 739
3.2.10 Caged Dynamics, Nearly Constant Loss, and Termination by the Primitive Relaxation 739
3.2.10.1 Caution for Those Who Prefer Data Represented by $\sigma'(\nu)$ than $M^*(\nu)$ 749
3.2.10.2 Rationalization of the Observed Properties of NCL by Its Relation to the Primitive Relaxation 750
3.2.11 A Problem Related to Glass Transition: Breakdown of Thermorheological Simplicity and Associated Viscoelastic Anomalies in Polymers 754
3.2.11.1 A Conundrum 755
3.2.11.2 Problems Encountered in an Explanation of the Breakdown of Thermorheological Simplicity 756
3.2.12 Looking Out for Universal Dynamics in Other Complex Interacting Systems 758
3.2.12.1 Charge Density Wave Systems 759
3.2.12.2 Aqueous Colloidal Dispersions of Magnetic Nanoparticles 760

4 Afterword .. 765
References .. 773
Index .. 823
Relaxation and Diffusion in Complex Systems
Ngai, K.L.
2011, XXI, 835 p. 325 illus., 159 illus. in color., Hardcover