# Contents

1 **Introduction to Compartmental Analysis** ......................................... 1  
   1.1 Concept of Compartments .................................................. 1  
      1.1.1 Living Systems ..................................................... 1  
      1.1.2 Thermodynamics and Entropy ................................. 3  
      1.1.3 Fundamental Solution ........................................... 6  
      1.1.4 Limitations of Compartmental Analysis ................... 6  
   1.2 Single Tissue Compartment Analysis ..................................... 7  
   1.3 Two Tissue Compartment Analysis ....................................... 9  
      1.3.1 Compartmental Assumptions ................................. 9  
      1.3.2 Combined Compartments ....................................... 12  
      1.3.3 Arteries and Veins ............................................. 13  
   1.4 Three Tissue Compartment Analysis .................................... 14  
      1.4.1 Compartmental Assumptions ................................... 15  
      1.4.2 Combined Compartments ....................................... 20  

2 **Fundamentals of Compartmental Kinetics** ..................................... 23  
   2.1 Definition of Relaxation Constants ................................. 23  
      2.1.1 Single Compartment ............................................ 24  
      2.1.2 Two Compartments ............................................... 25  
      2.1.3 Two Compartments with Sink .................................. 28  
      2.1.4 Three Compartments ........................................... 30  
      2.1.5 Three Compartments with Sink ................................ 34  
      2.1.6 Four or More Compartments ................................. 36  
      2.1.7 Multiple Compartments in Series and in Parallel ........ 39  
   2.2 Interpretation of Relaxation Constants ................................ 42  
      2.2.1 Flow ............................................................... 42  
      2.2.2 Passive Diffusion .............................................. 43  
      2.2.3 Properties of Delivery Compartment .......................... 49  
      2.2.4 Protein–Ligand Interaction .................................... 56  
      2.2.5 Receptor Binding ............................................... 61
## Contents

2.2.6 Facilitated Diffusion .............................................. 63
2.2.7 Enzymatic Reactions ............................................. 67
2.3 Determination of Relaxation Constants ............................ 70
  2.3.1 Stimulus-Response Relations .................................. 70
  2.3.2 Regression Analysis ............................................ 71
  2.3.3 Deconvolution of Response Function by Differentiation ...... 73
  2.3.4 Deconvolution by Temporal Transformation ................. 75
  2.3.5 Deconvolution of Response Function by Linearization ....... 86
2.4 Application of Relaxation Constants ................................ 91
  2.4.1 Peroxidation .................................................... 91
  2.4.2 Dopaminergic Neurotransmission ............................... 91

3 Analysis of Neuroreceptor Binding In Vivo ............................. 103
  3.1 The Receptor Concept ............................................. 103
  3.2 The Compartment Concept ......................................... 105
    3.2.1 Compartmental Analysis .................................... 105
    3.2.2 The Basic Equation ......................................... 106
    3.2.3 The Basic Solution .......................................... 107
  3.3 Two-Compartment (Permeability) Analysis .......................... 108
    3.3.1 Analysis of $K_1$ and $k_2$ ................................ 108
    3.3.2 Physiological Definitions of $K_1$ and $k_2$ ............... 110
  3.4 Three-Compartment (Binding) Analysis ............................. 111
    3.4.1 Analysis of $k_3$ and $k_4$ ................................ 111
    3.4.2 Molecular Definitions of $k_3$ and $k_4$ ................... 115
    3.4.3 Inhibition .................................................... 118
    3.4.4 The Problem of Solubility and Nonspecific Binding ....... 120
    3.4.5 The Problem of Labeled Metabolites ....................... 122
  3.5 In Vivo Analysis of Binding ....................................... 122
    3.5.1 Irreversible Binding: Determination of $k_3$ ............... 122
    3.5.2 Reversible Binding: Determination of Binding Potential ($p_B$) ........................................ 124
    3.5.3 Equilibrium Analysis: Determination of $B_{max}$ and $K_D$ 126

4 Neuroreceptor Mapping In Vivo: Monoamines ............................ 131
  4.1 Introduction ..................................................... 131
  4.2 Monoaminergic Neurotransmission ................................ 131
  4.3 Methods of Neuroreceptor Mapping ................................ 133
    4.3.1 Tracers of Monoaminergic Neurotransmission ............... 136
    4.3.2 Pharmacokinetics of Monoaminergic Neurotransmission .... 140
  4.4 Altered Monoaminergic Neurotransmission .......................... 145
    4.4.1 Dopamine .................................................... 146
    4.4.2 Serotonin ................................................... 149
    4.4.3 Design of Monoaminergic Drugs ............................. 151
  4.5 Conclusions ...................................................... 151
5 Blood–Brain Transfer and Metabolism of Oxygen ............................................153
  5.1 Introduction ....................................................................................................153
  5.2 Blood–Brain Transfer of Oxygen .................................................................154
      5.2.1 Capillary Model of Oxygen Transfer ...................................................154
      5.2.2 Compartment Model of Oxygen Transfer ...........................................157
  5.3 Oxygen in Brain Tissue ..................................................................................159
      5.3.1 Cytochrome Oxidation ........................................................................159
      5.3.2 Mitochondrial Oxygen Tension ............................................................161
  5.4 Flow-Metabolism Coupling of Oxygen .........................................................165
  5.5 Limits to Oxygen Supply ..............................................................................167
      5.5.1 Distributed Model of Insufficient Oxygen Delivery ............................168
      5.5.2 Compartment Model of Insufficient Oxygen Delivery .......................171
  5.6 Experimental Results ....................................................................................172
      5.6.1 Brain Tissue and Mitochondrial Oxygen Tensions ...............................172
      5.6.2 Flow-Metabolism Coupling .................................................................173
      5.6.3 Ischemic Limits of Oxygen Diffusibility ..............................................176

6 Blood–Brain Glucose Transfer ........................................................................177
  6.1 Brief History .................................................................................................177
  6.2 Brain Endothelial Glucose Transporter .........................................................178
      6.2.1 Molecular Biology ...............................................................................178
      6.2.2 Molecular Kinetics ............................................................................180
      6.2.3 Structural Requirements of Glucose Transport ....................................181
  6.3 Theory of Blood–Brain Glucose Transfer ......................................................182
      6.3.1 Apparent Permeability and Flux .........................................................183
      6.3.2 Facilitated Diffusion ............................................................................186
      6.3.3 Multiple Membranes ..........................................................................189
  6.4 Evidence of Blood–Brain Glucose Transfer ..................................................191
      6.4.1 Methods ..............................................................................................192
      6.4.2 Normal Values in Awake Subjects .......................................................196
      6.4.3 Acute Changes of Glucose Transport ....................................................201
      6.4.4 Chronic Changes ..................................................................................206

7 Metabolism of Glucose ......................................................................................211
  7.1 Basic Principles of Metabolism .....................................................................211
      7.1.1 Glycolysis ...........................................................................................212
      7.1.2 Oxidative Phosphorylation ..................................................................214
      7.1.3 Gluconeogenesis ..................................................................................214
      7.1.4 Glycogenesis and Glycogenolysis ..........................................................215
      7.1.5 Pentose-Phosphate Pathway ................................................................215
  7.2 Kinetics of Steady-State Glucose Metabolism ...............................................215
  7.3 Kinetics of Deoxyglucose Metabolism ...........................................................217
      7.3.1 Irreversible Metabolism ......................................................................219
      7.3.2 Lumped Constant ...............................................................................220
      7.3.3 Reversible Metabolism .......................................................................221
7.4 Operational Equations .................................................... 224
  7.4.1 Irreversible Metabolism of Deoxyglucose .................... 224
  7.4.2 Reversible Metabolism of Fluorodeoxyglucose .......... 229
  7.4.3 Metabolism of Tracer Glucose ................................. 231
7.5 Glucose Metabolic Rates ............................................. 233
  7.5.1 Lumped Constant Variability .................................. 235
  7.5.2 Whole-Brain Glucose Consumption ......................... 237
  7.5.3 Regional Brain Glucose Consumption ....................... 238

8 Neuroenergetics .......................................................... 241
  8.1 Brain Work ............................................................. 241
  8.2 Ion Homeostasis ...................................................... 242
  8.3 Brain Energy Metabolism .......................................... 244
    8.3.1 Definition of Brain Activity Levels ...................... 244
    8.3.2 Stages of Brain Metabolic Activity ..................... 246
  8.4 Substrate Transport in Brain ..................................... 248
    8.4.1 Glucose Transport ............................................. 248
    8.4.2 Monocarboxylate Transport ................................. 249
    8.4.3 Oxygen Transport ............................................. 250
  8.5 ATP Homeostasis ..................................................... 252
    8.5.1 Hydrolysis of Phosphocreatine ............................ 253
    8.5.2 Glycolysis ..................................................... 253
    8.5.3 Oxidative Phosphorylation ................................. 256
  8.6 Metabolic Compartmentation ..................................... 259
    8.6.1 Functional Properties of Neurons and Astrocytes .... 259
    8.6.2 Metabolic Properties of Neurons and Astrocytes ...... 260
  8.7 Activation ................................................................ 265
    8.7.1 Ion Homeostasis During Activation ...................... 266
    8.7.2 Brain Energy Metabolism During Activation .......... 267
    8.7.3 Substrate Delivery During Activation .................. 273
    8.7.4 ATP Homeostasis During Activation ...................... 281
    8.7.5 Metabolic Compartmentation During Activation ...... 286
  8.8 Conclusions ............................................................ 288

Glossary .............................................................................. 291

References ........................................................................... 301

Index .................................................................................... 335
Neurokinetics
The Dynamics of Neurobiology in Vivo
Gjedde, A.; Bauer, W.R.; Wong, D.
2011, XVI, 343 p., Hardcover