Contents

Contents of Volumes II and III ................................................ xi
Preface...................................................................................... xiii

1 Basic Theory of ODE and Vector Fields ................................. 1
  1 The derivative .......................................................... 3
  2 Fundamental local existence theorem for ODE ....................... 9
  3 Inverse function and implicit function theorems....................... 12
  4 Constant-coefficient linear systems; exponentiation of matrices ... 16
  5 Variable-coefficient linear systems of ODE: Duhamel’s principle... 26
  6 Dependence of solutions on initial data and on other parameters… 31
  7 Flows and vector fields ................................................. 35
  8 Lie brackets .................................................................. 40
  9 Commuting flows; Frobenius’s theorem ................................ 43
 10 Hamiltonian systems ........................................................ 47
 11 Geodesics ..................................................................... 51
 12 Variational problems and the stationary action principle......... 59
 13 Differential forms ...................................................... 70
 14 The symplectic form and canonical transformations .............. 83
 15 First-order, scalar, nonlinear PDE .................................... 89
 16 Completely integrable hamiltonian systems ......................... 96
 17 Examples of integrable systems; central force problems ......... 101
 18 Relativistic motion ...................................................... 105
 19 Topological applications of differential forms ..................... 110
 20 Critical points and index of a vector field .......................... 118
A Nonsmooth vector fields ............................................... 122
   References ..................................................................... 125

2 The Laplace Equation and Wave Equation ............................. 127
  1 Vibrating strings and membranes...................................... 129
  2 The divergence of a vector field ....................................... 140
  3 The covariant derivative and divergence of tensor fields ....... 145
  4 The Laplace operator on a Riemannian manifold .................. 153
  5 The wave equation on a product manifold and energy conservation 156
  6 Uniqueness and finite propagation speed ............................ 162
  7 Lorentz manifolds and stress-energy tensors ....................... 166
  8 More general hyperbolic equations; energy estimates.......... 172
## Contents

9 The symbol of a differential operator and a general Green–Stokes formula ................................................. 176
10 The Hodge Laplacian on $k$-forms ..................................... 180
11 Maxwell’s equations ................................................... 184
References ........................................................................ 194

### 3 Fourier Analysis, Distributions, and Constant-Coefficient Linear PDE

1 Fourier series ................................................................ 198
2 Harmonic functions and holomorphic functions in the plane ........ 209
3 The Fourier transform .................................................. 222
4 Distributions and tempered distributions .............................. 230
5 The classical evolution equations ..................................... 244
6 Radial distributions, polar coordinates, and Bessel functions ...... 263
7 The method of images and Poisson’s summation formula ......... 273
8 Homogeneous distributions and principal value distributions ...... 278
9 Elliptic operators ....................................................... 286
10 Local solvability of constant-coefficient PDE ...................... 289
11 The discrete Fourier transform ........................................ 292
12 The fast Fourier transform ............................................. 301
A The mighty Gaussian and the sublime gamma function ......... 306
References ........................................................................ 312

4 Sobolev Spaces ................................................................ 315
1 Sobolev spaces on $\mathbb{R}^n$ ................................................ 315
2 The complex interpolation method .................................... 321
3 Sobolev spaces on compact manifolds ................................ 328
4 Sobolev spaces on bounded domains ................................. 331
5 The Sobolev spaces $H^s_0(\Omega)$ ....................................... 338
6 The Schwartz kernel theorem .......................................... 345
7 Sobolev spaces on rough domains ..................................... 349
References ........................................................................ 351

5 Linear Elliptic Equations .................................................. 353
1 Existence and regularity of solutions to the Dirichlet problem ...... 354
2 The weak and strong maximum principles ............................ 364
3 The Dirichlet problem on the ball in $\mathbb{R}^n$ ......................... 373
4 The Riemann mapping theorem (smooth boundary) .............. 379
5 The Dirichlet problem on a domain with a rough boundary ...... 383
6 The Riemann mapping theorem (rough boundary) ................ 398
7 The Neumann boundary problem ..................................... 402
8 The Hodge decomposition and harmonic forms ..................... 410
9 Natural boundary problems for the Hodge Laplacian ............. 421
10 Isothermal coordinates and conformal structures on surfaces ... 438
11 General elliptic boundary problems .................................. 441
12 Operator properties of regular boundary problems ............... 462
6 Linear Evolution Equations .................................................. 481
1 The heat equation and the wave equation on bounded domains ..... 482
2 The heat equation and wave equation on unbounded domains ..... 490
3 Maxwell’s equations .......................................................... 496
4 The Cauchy–Kowalewsky theorem ........................................ 499
5 Hyperbolic systems ............................................................ 504
6 Geometrical optics ............................................................ 510
7 The formation of caustics ................................................... 518
8 Boundary layer phenomena for the heat semigroup .................. 535
A Some Banach spaces of harmonic functions .......................... 541
B The stationary phase method .............................................. 543
References ........................................................................ 545

A Outline of Functional Analysis ............................................. 549
1 Banach spaces ..................................................................... 549
2 Hilbert spaces ..................................................................... 556
3 Fréchet spaces; locally convex spaces .................................... 561
4 Duality ............................................................................. 564
5 Linear operators .................................................................. 571
6 Compact operators ............................................................. 579
7 Fredholm operators ........................................................... 593
8 Unbounded operators ........................................................ 596
9 Semigroups ........................................................................ 603
References ........................................................................ 615

B Manifolds, Vector Bundles, and Lie Groups ............................ 617
1 Metric spaces and topological spaces ..................................... 617
2 Manifolds ........................................................................ 622
3 Vector bundles .................................................................. 624
4 Sard’s theorem ................................................................. 626
5 Lie groups ......................................................................... 627
6 The Campbell–Hausdorff formula ........................................ 630
7 Representations of Lie groups and Lie algebras ...................... 632
8 Representations of compact Lie groups ................................ 636
9 Representations of SU(2) and related groups ......................... 641
References ........................................................................ 647

Index ................................................................................. 649
Contents of Volumes II and III

Volume II: Qualitative Studies of Linear Equations

7 Pseudodifferential Operators
8 Spectral Theory
9 Scattering by Obstacles
10 Dirac Operators and Index Theory
11 Brownian Motion and Potential Theory
12 The \( \bar{\partial} \)-Neumann Problem

C Connections and Curvature

Volume III: Nonlinear Equations

13 Function Space and Operator Theory for Nonlinear Analysis
14 Nonlinear Elliptic Equations
15 Nonlinear Parabolic Equations
16 Nonlinear Hyperbolic Equations
17 Euler and Navier–Stokes Equations for Incompressible Fluids
18 Einstein’s Equations