Contents

Part I Introduction

1 Software Automatic Tuning: Concepts and State-of-the-Art
 Results ... 3
 Reiji Suda, Ken Naono, Keita Teranishi, and John Cavazos

Part II Achievements in Scientific Computing

2 ATLAS Version 3.9: Overview and Status 19
 R. Clint Whaley

3 Autotuning Method for Deciding Block Size Parameters
 in Dynamically Load-Balanced BLAS 33
 Yuta Sawa and Reiji Suda

4 Automatic Tuning for Parallel FFTs 49
 Daisuke Takahashi

5 Dynamic Programming Approaches to Optimizing
 the Blocking Strategy for Basic Matrix Decompositions 69
 Yusaku Yamamoto and Takeshi Fukaya

6 Automatic Tuning of the Division Number in the Multiple
 Division Divide-and-Conquer for Real Symmetric
 Eigenproblem ... 87
 Yusuke Ishikawa, Junichi Tamura, Yutaka Kuwajima,
 and Takaomi Shigehara

7 Automatically Tuned Mixed-Precision Conjugate
 Gradient Solver ... 103
 Serban Georgescu and Hiroshi Okuda
8 Automatically Tuned Sparse Eigensolvers121
Ken Naono, Takao Sakurai, and Masashi Egi

9 Systematic Performance Evaluation of Linear Solvers
Using Quality Control Techniques135
Shoji Itoh and Masaaki Sugihara

10 Application of Alternating Decision Trees in Selecting
Sparse Linear Solvers ..153
Sanjukta Bhowmick, Victor Eijkhout, Yoav Freund,
Erika Fuentes, and David Keyes

11 Toward Automatic Performance Tuning for Numerical
Simulations in the SILC Matrix Computation Framework175
Tamito Kajiyama, Akira Nukada, Reiji Suda,
Hidehiko Hasegawa, and Akira Nishida

12 Exploring Tuning Strategies for Quantum Chemistry
Computations ...193
Lakshminarasimhan Seshagiri, Meng-Shiou Wu,
Masha Sosonkina, and Zhao Zhang

13 Automatic Tuning of CUDA Execution Parameters
for Stencil Processing ..209
Katsuto Sato, Hiroyuki Takizawa, Kazuhiko Komatsu,
and Hiroaki Kobayashi

14 Static Task Cluster Size Determination in Homogeneous
Distributed Systems ..229
Hidehiro Kanemitsu, Gilhyon Lee, Hidenori Nakazato,
Takashige Hoshiai, and Yoshiyori Urano

Part III Evolution to a General Paradigm

15 Algorithmic Parameter Optimization of the DFO Method
with the OPAL Framework ..255
Charles Audet, Cong-Kien Dang, and Dominique Orban

16 A Bayesian Method of Online Automatic Tuning275
Reiji Suda

17 ABCLibScript: A Computer Language for Automatic
Performance Tuning ...295
Takahiro Katagiri
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Automatically Tuning Task-Based Programs for Multicore Processors</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>Jin Zhou and Brian Demsky</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Efficient Program Compilation Through Machine Learning Techniques</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Gennady Pekhimenko and Angela Demke Brown</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Autotuning and Specialization: Speeding up Matrix Multiply for Small Matrices with Compiler Technology</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Jaewook Shin, Mary W. Hall, Jacqueline Chame, Chun Chen, and Paul D. Hovland</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>371</td>
</tr>
</tbody>
</table>
Software Automatic Tuning
From Concepts to State-of-the-Art Results
Naono, K.; Teranishi, K.; Cavazos, J.; Suda, R. (Eds.)
2010, XIV, 377 p., Hardcover
ISBN: 978-1-4419-6934-7