Contents

1 Introduction ... 1
 1.1 Trends in Failure Cause and Countermeasure 1
 1.2 Contents and Organization of This Book 3
 1.3 For the Best Result ... 5
 References .. 5

2 Terrestrial Neutron-Induced Failures in Semiconductor Devices and Relevant Systems and Their Mitigation Techniques ... 7
 2.1 Introduction ... 7
 2.1.1 SER in Memory Devices 7
 2.1.2 MCU in Memory Devices 8
 2.1.3 SET and MNU in Logic Devices 8
 2.1.4 Chip/System-Level SER Problem:
 SER Estimation and Mitigation 9
 2.1.5 Scope of This Chapter 9
 2.2 Basic Knowledge on Terrestrial Neutron-Induced Soft-Error in MOSFET Devices .. 10
 2.2.1 Cosmic Rays from the Outer Space 10
 2.2.2 Nuclear Spallation Reaction and Charge
 Collection in CMOSFET Device 11
 2.3 Experimental Techniques to Quantify Soft-Error Rate (SER) and Their Standardization 12
 2.3.1 The System to Quantify SER – SECIS 12
 2.3.2 Basic Method in JESD89A 13
 2.3.3 SEE Classification Techniques in Time Domain ... 15
 2.3.4 MCU Classification Techniques in Topological
 Space Domain .. 16
 2.4 Evolution of Multi-node Upset Problem 17
 2.4.1 MCU Characterization by Accelerator-Based
 Experiments ... 17
 2.4.2 Multi-coupled Bipolar Interaction (MCBI) 21
 2.5 Simulation Techniques for Neutron-Induced Soft Error 23
 2.5.1 Overall Microscopic Soft-Error Model 23
2.5.2 Nuclear Spallation Reaction Models 24
2.5.3 Charge Deposition Model 24
2.5.4 SRAM Device Model 26
2.5.5 Cell Matrix Model 27
2.5.6 Recycle Simulation Method 28
2.5.7 Validation of SRAM Model 29

2.6 Prediction for Scaling Effects Down to 22 nm
Design Rule in SRAMs 29
2.6.1 Roadmap Assumption 29
2.6.2 Results and Discussions 30
2.6.3 Validity of Simulated Results 39

2.7 SER Estimation in Devices/Components/System 40
2.7.1 Standards for SER Measurement for Memories 40
2.7.2 Revisions Needed for the Standards 40
2.7.3 Quantification of SER in Logic Devices
and Related Issues .. 42

2.8 An Example of Chip/Board-Level SER Measurement
and Architectural Mitigation Techniques 43
2.8.1 SER Test Procedures for Network Components 43
2.8.2 Results and Discussions 49

2.9 Hierarchical Mitigation Strategies 51
2.9.1 Basic Three Approaches 51
2.9.2 Design on the Upper Bound (DOUB) 52

2.10 Inter Layer Built-In Reliability (LABIR) 56

2.11 Summary .. 57
References ... 59

3 Electromagnetic Compatibility 65
3.1 Introduction ... 65
3.2 Quantitative Estimation of the EMI Radiation Based
on the Measured Near-Field Magnetic Distribution 68
3.2.1 Measurement of the Magnetic Field Distribution
Near the Circuit Board 68
3.2.2 Calculation of the Electric Current Distribution
on the Circuit Board ... 68
3.2.3 Calculation of the Far-Field Radiated EMI 70

3.3 Development of a Non-contact Current Distribution
Measurement Technique for LSI Packaging on PCBs 71
3.3.1 Electric Current Distribution Detection 71
3.3.2 The Current Detection Result and Its Verification 74

3.4 Reduction Technique of Radiated Emission
from Chassis with PCB .. 75
3.4.1 Far-Field Measurement of Chassis with PCB 75
3.4.2 Measurements of Junction Current 79
Contents

3.4.3 PSPICE Modeling 80
3.4.4 Experimental Validation 85

3.5 Chapter Summary 86

References ... 88

4 Power Integrity

4.1 Introduction 91

4.2 Detrimental Effect and Technical Trends of Power Integrity Design of Electronic Systems and Devices 92
4.2.1 Detrimental Effect by Power Supply Noise on Semiconducting Devices 92
4.2.2 Trends of Power Supply Voltage and Power Supply Current for CMOS Semiconducting Devices ... 98
4.2.3 Trend of Power Distribution Network Design for Electronic Systems 100

4.3 Design Methodology of Power Integrity 102
4.3.1 Definition of Power Supply Noise in Electric System 102
4.3.2 Time-Domain and Frequency-Domain Design Methodology 104

4.4 Modeling and Design Methodologies of PDS 115
4.4.1 Modeling of Electrical Circuit Parameters 116
4.4.2 Design Strategies of PDS 121

4.5 Simultaneous Switching Noise (SSN) 125
4.5.1 Principle of SSN 126
4.5.2 S–G loop SSN 127
4.5.3 P–G loop SSN 129

4.6 Measurement of Power Distribution System Performance 131
4.6.1 On-Chip Voltage Waveform Measurement 131
4.6.2 On-Chip Power Supply Impedance Measurement 137

4.7 Summary ... 140

References ... 141

5 Fault-Tolerant System Technology

5.1 Introduction 143

5.2 Metrics for Dependability 144
5.2.1 Reliability 144
5.2.2 Availability 145
5.2.3 Safety ... 147

5.3 Reliability Paradox 148

5.4 Survey on Fault-Tolerant Systems 150

5.5 Technical Issues 153
5.5.1 High Performance 154
5.5.2 Transparency 156
5.5.3 Physical Transparency 156
5.5.4 Fault Tolerance of Fault Tolerance for Ultimate Safety 157
5.5.5 Reliability of Software 160
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Industrial Approach</td>
<td>161</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Autonomous Decentralized Systems</td>
<td>163</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Space Application</td>
<td>164</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Commercial Fault-Tolerant Systems</td>
<td>164</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Ultra-Safe System</td>
<td>165</td>
</tr>
<tr>
<td>5.7</td>
<td>Availability Improvement vs. Coverage Improvement</td>
<td>166</td>
</tr>
<tr>
<td>5.8</td>
<td>Trade-Off Between Availability and Coverage – Stepwise Negotiating Voting</td>
<td>166</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Basic Concept</td>
<td>166</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Hiten Onboard Computer</td>
<td>169</td>
</tr>
<tr>
<td>5.8.3</td>
<td>Fault-Tolerance Experiments</td>
<td>170</td>
</tr>
<tr>
<td>5.8.4</td>
<td>Extension of SNV – Redundancy Management</td>
<td>173</td>
</tr>
<tr>
<td>5.9</td>
<td>Coverage Improvement</td>
<td>175</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Self-Checking Comparator</td>
<td>176</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Optimal Time Diversity</td>
<td>179</td>
</tr>
<tr>
<td>5.10</td>
<td>On-Chip Redundancy</td>
<td>184</td>
</tr>
<tr>
<td>5.11</td>
<td>High Performance (Commercial Fault-Tolerant Computer)</td>
<td>188</td>
</tr>
<tr>
<td>5.11.1</td>
<td>Basic Concepts of TPR Architecture</td>
<td>188</td>
</tr>
<tr>
<td>5.11.2</td>
<td>System Configuration</td>
<td>189</td>
</tr>
<tr>
<td>5.11.3</td>
<td>System Reconfiguration on Fault Occurrence</td>
<td>191</td>
</tr>
<tr>
<td>5.11.4</td>
<td>Processing Take-Over on Fault Occurrence</td>
<td>191</td>
</tr>
<tr>
<td>5.11.5</td>
<td>Fault Tolerance of Fault Tolerance</td>
<td>192</td>
</tr>
<tr>
<td>5.11.6</td>
<td>Commercial Product Model</td>
<td>195</td>
</tr>
<tr>
<td>5.12</td>
<td>Current Application Field: X-by-Wire</td>
<td>196</td>
</tr>
</tbody>
</table>

References | 198 |

6 Challenges in the Future | 201 |

References | 202 |

Index | 203 |
Dependability in Electronic Systems
Mitigation of Hardware Failures, Soft Errors, and Electro-Magnetic Disturbances
Kanekawa, N.; Ibe, E.H.; Suga, T.; Uematsu, Y.
2011, XXV, 204 p., Hardcover