Contents

1 Neurodegeneration in Neural Trauma, Neurodegenerative Diseases, and Neuropsychiatric Disorders ........................................... 1
  1.1 Introduction ........................................................................ 1
  1.2 Neurodegeneration in Ischemic Injury ................................. 7
  1.3 Neurodegeneration in Traumatic Brain Injury and Spinal Cord Trauma ................................................................. 9
  1.4 Neurodegeneration in Neurodegenerative Diseases ............. 9
  1.5 Neurodegeneration in Neuropsychiatric Diseases .............. 14
  1.6 Similarities and Differences Between Ischemic, Neurotraumatic Injuries, Neurodegenerative Diseases, and Neuropsychiatric Disorders ......................................................... 15
  1.7 Conclusion ........................................................................ 20

References .................................................................................. 21

2 Neurochemical Aspects of Ischemic Injury .............................. 27
  2.1 Introduction ........................................................................ 27
  2.2 Ischemic Injury-Mediated Alterations in Glycerophospholipid Metabolism ............................................................ 31
  2.3 Ischemic Injury-Mediated Alterations in Protein Metabolism . 36
  2.4 Ischemic Injury-Mediated Alterations in Nucleic Acid Metabolism .......................................................... 39
  2.5 Ischemic Injury-Mediated Alterations in Enzymic Activities . 42
  2.6 Ischemic Injury-Mediated Alterations in Nuclear Transcription Factor-κB (NF-κB) ................................................. 43
  2.7 Ischemic Injury-Mediated Alterations in Genes ................. 45
  2.8 Ischemic Injury-Mediated Alterations in Cytokines and Chemokines ........................................................... 48
  2.9 Ischemic Injury-Mediated Alterations in Heat Shock Proteins . 50
  2.10 Ischemic Injury-Mediated Alterations in Adehesion Molecules . 51
  2.11 Ischemic Injury-Mediated Alterations in Apoptosis-Inducing Factor .......................................................... 52
  2.12 Ischemic Injury-Mediated Alterations in Na⁺/Ca²⁺ Exchanger . 53
  2.13 Mechanism of Neurodegeneration in Ischemia/Reperfusion Injury .......................................................... 55
## 3 Potential Neuroprotective Strategies for Ischemic Injury

3.1 Introduction ................................................. 67

3.2 Potential Treatment Strategies for Ischemic Injuries .......... 68
   3.2.1 \textit{N}-Methyl-\textit{d}-Aspartate Receptor Antagonists and Stroke Therapy .................. 73
   3.2.2 Calcium Channel Blockers and Stroke Therapy .......... 74
   3.2.3 Free Radical Scavengers and Stroke Therapy .......... 74
   3.2.4 GM1 Ganglioside and Stroke Therapy ................. 78
   3.2.5 Statins and Stroke Therapy .......................... 79
   3.2.6 \textit{\omega}-3 Fatty Acids and Stroke .................. 80
   3.2.7 Cytidine (CDP-Choline) and Stroke Therapy ......... 82
   3.2.8 Peroxisome Proliferator-Activated Receptor \gamma-Agonists and Stroke .................. 84
   3.2.9 Hypoxia-Inducible Factor 1 and Stroke Therapy ..... 85
   3.2.10 Vaccine and Stroke Therapy ........................ 86
   3.2.11 Pipeline Developments on Drugs for Stroke Therapy . 87
   3.2.12 Intracellular Cell Therapy in Stroke ............... 89

3.3 Mechanism of Neuroprotection in Ischemic Injury .......... 90
   3.3.1 Prevention of Stroke Through the Modulation of Risk Factors .................. 92
   3.3.2 Selection of Diet and Stroke ....................... 92
   3.3.3 Physical Exercise and Stroke ....................... 95
   3.3.4 Transcranial Magnetic Stimulation and Stroke Rehabilitation .................. 96
   3.3.5 Occupational Therapy and Rehabilitation After Stroke . 97

3.4 Conclusion ................................................. 98

References .................................................................. 99

## 4 Neurochemical Aspects of Spinal Cord Injury

4.1 Introduction ................................................. 107

4.2 Regeneration and Neuritogenesis in SCI ..................... 109

4.3 Necrosis and Apoptosis in SCI ............................. 111

4.4 Contribution of Excitotoxicity in Spinal Cord Injury ...... 112

4.5 Enzymic Activities in Spinal Cord Injury .................. 114
   4.5.1 Activation of PLA \textsubscript{2} in Spinal Cord Injury ............. 114
   4.5.2 Activation of COX-2 in Spinal Cord Injury .......... 116
   4.5.3 Activation of NOS in Spinal Cord Injury .......... 117
   4.5.4 Activation of Calcineurin in Spinal Cord Injury .... 119
   4.5.5 Activation of Matrix Metalloproteinases in Spinal Cord Injury ................. 119
   4.5.6 Activation of Poly (ADP-Ribose) Polymerase in Spinal Cord Injury .......... 121
   4.5.7 Activation of RhoA and RhoB in Spinal Cord Injury ..... 122
### Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.8 Activation of Caspases in Spinal Cord Injury</td>
<td>122</td>
</tr>
<tr>
<td>4.5.9 Activation of Calpains and Other Proteases in Spinal Cord Injury</td>
<td>123</td>
</tr>
<tr>
<td>4.6 Activation of Cytokines and Chemokines in Spinal Cord Injury</td>
<td>124</td>
</tr>
<tr>
<td>4.7 Fas/CD95 Receptor–Ligand System in Spinal Cord Injury</td>
<td>126</td>
</tr>
<tr>
<td>4.8 Activation of Transcription Factors in Spinal Cord Injury</td>
<td>126</td>
</tr>
<tr>
<td>4.8.1 NF-κB in Spinal Cord Injury</td>
<td>127</td>
</tr>
<tr>
<td>4.8.2 Peroxisome Proliferator-Activated Receptor in Spinal Cord Injury</td>
<td>128</td>
</tr>
<tr>
<td>4.8.3 STAT in Spinal Cord Injury</td>
<td>128</td>
</tr>
<tr>
<td>4.8.4 AP-1 in Spinal Cord Injury</td>
<td>129</td>
</tr>
<tr>
<td>4.9 Gene Transcription in Spinal Cord Injury</td>
<td>130</td>
</tr>
<tr>
<td>4.10 Mitochondrial Permeability Transition in Spinal Cord Injury</td>
<td>130</td>
</tr>
<tr>
<td>4.12 Growth Factors in Spinal Cord Injury</td>
<td>133</td>
</tr>
<tr>
<td>4.13 Other Neurochemical Changes in Spinal Cord Injury</td>
<td>135</td>
</tr>
<tr>
<td>4.14 Neuropathic Pain in SCI</td>
<td>136</td>
</tr>
<tr>
<td>4.15 Contribution of Oxidative Stress in Spinal Cord Injury</td>
<td>137</td>
</tr>
<tr>
<td>4.16 Inflammation in Spinal Cord Injury</td>
<td>139</td>
</tr>
<tr>
<td>4.17 Interactions Among Excitotoxicity, Oxidative Stress, and Inflammation in Spinal Cord Injury</td>
<td>140</td>
</tr>
<tr>
<td>4.18 Conclusion</td>
<td>141</td>
</tr>
<tr>
<td>References</td>
<td>142</td>
</tr>
</tbody>
</table>

5 Potential Neuroprotective Strategies for Experimental Spinal Cord Injury .............................. 151

5.1 Introduction .................................................................................................................. 151

5.2 Metalloproteinases and Glial Scar Formation ............................................................... 152

5.3 Other Inhibitory Molecules Contributing to Axonal Growth Inhibition .......................... 152

5.4 Neuroprotective Strategies ............................................................................................. 156

5.4.1 Methylprednisolone and SCI ..................................................................................... 157

5.4.2 GM₁ Ganglioside and SCI ......................................................................................... 160

5.4.3 Tirilazad Mesylate and SCI .................................................................................... 161

5.4.4 Inhibitors of Calpains, Nitric Oxide Synthase, and PLA₂ and SCI ........................ 162

5.4.5 Minocycline and SCI ............................................................................................... 165

5.4.6 Thyrotropin-Releasing Hormone and SCI .................................................................. 167

5.4.7 Dantrolene and SCI ............................................................................................... 167

5.4.8 ω-3 Fatty Acids and SCI ......................................................................................... 168

5.4.9 Polyethylene Glycol and SCI .................................................................................. 168

5.4.10 Opioid Receptor Antagonists, Glutamate Receptor Antagonists, and Calcium Channel Blockers in SCI .................................................................................. 169

5.4.11 Growth Factors and SCI ......................................................................................... 170
5.5 Regeneration and SCI ........................................... 171
  5.5.1 Stem/Progenitor Cell Transplants ...................... 171
  5.5.2 Human Umbilical Cord Blood Stem Cells Transplants .. 172
5.6 Rehabilitation and SCI ....................................... 173
5.7 Conclusion ..................................................... 174
References ........................................................ 174

6 Neurochemical Aspects of Traumatic Brain Injury .......... 183
  6.1 Introduction .................................................. 183
  6.2 TBI-Mediated Alterations in Glutamate and Calcium Levels .. 186
  6.3 TBI-Mediated Alterations in Cytokines ....................... 187
  6.4 TBI-Mediated Alterations in Chemokines ..................... 188
  6.5 TBI-Mediated Alterations in Enzymic Activities .......... 189
    6.5.1 PLA$_2$ and DAG/PLC Pathway in TBI .................. 190
    6.5.2 Cyclooxygenases (COX) and Lipoxygenases (LOX) in TBI . 191
    6.5.3 Calpain Activity in TBI ............................... 192
    6.5.4 Caspases in TBI ......................................... 192
    6.5.5 Nitric Oxide Synthase in TBI .......................... 193
    6.5.6 Kinases in TBI .......................................... 194
    6.5.7 Matrix Metalloproteinases (MMPs) in TBI ................ 196
    6.5.8 Calcineurin in TBI ..................................... 196
    6.5.9 Other Enzymes in TBI .................................. 197
  6.6 TBI-Mediated Alterations in Cytoskeletal Protein .......... 197
  6.7 TBI-Mediated Alterations in Transcription Factors ........ 198
    6.7.1 Nuclear Factor Kappa B (NF-κB) in TBI ................ 198
    6.7.2 Signal Transducers and Activators of Transcription (STATs) in TBI ........................................... 200
    6.7.3 Nuclear Factor E2-Related Factor 2 in TBI ............ 200
    6.7.4 AP-1 Transcription Factor in TBI ..................... 201
    6.7.5 CCAAT/Enhancer-Binding Protein (C/EBP) in TBI ....... 201
  6.8 TBI-Mediated Alterations in Gene Expression .............. 202
  6.9 TBI-Mediated Alterations in Adhesion Molecules ........... 204
  6.10 TBI-Mediated Alterations in Neurotrophic Factors .......... 204
  6.11 TBI-Mediated Alterations in Complement System .......... 205
  6.12 TBI Mediators Alterations in Endocannabinoids .......... 206
  6.13 TBI-Mediated Changes in Hydroxycholesterols ............ 207
  6.14 TBI and Apoptotic Cell Death ................................ 207
  6.15 Molecular Mechanism of Neurodegeneration in TBI ......... 208
  6.16 Conclusion .................................................. 210
References ........................................................ 210

7 Potential Neuroprotective Strategies for Traumatic Brain Injury . 219
  7.1 Introduction .................................................. 219
  7.2 Regeneration and Neuritogenesis in TBI ................. 220
7.3 Potential Neuroprotective Strategies for TBI .......................... 221
7.3.1 Statins and TBI ............................................. 222
7.3.2 Progesterone and TBI ...................................... 225
7.3.3 Erythropoietin and TBI ................................... 229
7.3.4 Minocycline and TBI .................................. 231
7.3.5 PPARα Agonist and TBI ................................. 232
7.3.6 Endocannabinoids and TBI .............................. 234
7.3.7 Thyrotropin-Releasing Hormone (TRH) and TBI ........ 237
7.3.8 Cytosine (CDP-Choline) and TBI ..................... 237
7.3.9 ω-3 Fatty Acids and TBI ............................... 238
7.3.10 Hypothermia and TBI .................................. 239

7.4 Cell Therapy and TBI ........................................... 240

7.5 Conclusion .................................................. 241

8 Neurochemical Aspects of Neurodegenerative Diseases ............. 249
8.1 Introduction .................................................. 249
8.2 Factors and Molecular Mechanisms that Modulate
Neurodegeneration in Neurodegenerative Diseases ............... 251
8.3 Neurochemical Aspects of Alzheimer Disease .................... 254
8.3.1 Lipids in AD ................................................. 256
8.3.2 Protein in AD ................................................ 259
8.3.3 Nucleic Acid in AD .......................................... 264
8.3.4 Transcription Factors in AD ............................ 265
8.3.5 Gene Expression in AD .................................. 266
8.3.6 Neurotrophins in AD .................................... 267
8.3.7 Insulin and Insulin-Like Growth Factor in AD .......... 268

8.4 Neurochemical Aspects of Parkinson Disease ...................... 269
8.4.1 Lipids in PD ............................................... 270
8.4.2 Proteins in PD ............................................. 272
8.4.3 Nucleic Acids in PD ...................................... 274
8.4.4 Transcription Factors in PD ............................ 275
8.4.5 Gene Expression in PD .................................. 276
8.4.6 Neurotrophins in PD .................................... 277

8.5 Neurochemical Aspects of Amyotrophic Lateral Sclerosis ....... 278
8.5.1 Lipids in ALS ................................................. 280
8.5.2 Proteins in ALS ............................................. 281
8.5.3 Nucleic Acids in ALS .................................... 282
8.5.4 Transcription Factors in ALS ............................ 283
8.5.5 Gene Expression in ALS .................................. 283
8.5.6 Neurotrophins in ALS .................................... 284

8.6 Neurochemical Aspects of Huntington Disease .................. 285
8.6.1 Lipids in HD ............................................... 286
8.6.2 Proteins in HD ............................................. 287
8.6.3 Nucleic Acids in HD ...................................... 289
9.4.6 PPAR Agonists and PD Treatment ..................... 356
9.4.7 Neurotrophins and PD Treatment ..................... 357
9.4.8 ω-3 Polyunsaturated Fatty Acids and PD Treatment .. 357
9.5 Therapeutic Approaches for ALS .......................... 358
9.5.1 Riluzole and Memantine and ALS Treatment .......... 359
9.5.2 Antioxidant Strategies and ALS Treatment .......... 360
9.5.3 Stabilization of Mitochondrial Dynamics and ALS Treatment .......... 360
9.5.4 Neurotrophins and ALS Treatment ..................... 361
9.5.5 ω-3 Fatty Acids and ALS Treatment .................. 362
9.5.6 Immunotherapy and ALS Treatment .................... 362
9.6 Therapeutic Approaches for HD ............................ 362
9.6.1 Gene Silencing and HD Treatment ...................... 363
9.6.2 Enhancement of Protein Degradation and HD Treatment 363
9.6.3 Inhibition of Aggregation and HD Treatment .......... 364
9.6.4 Creatine and Other Antioxidants and HD Treatment .. 364
9.6.5 Minocycline and HD Treatment .......................... 365
9.6.6 ω-3 Fatty Acids and HD Treatment .................... 365
9.7 Therapeutic Approaches for Prion Diseases ................. 366
9.7.1 Pentosan Polysulfate for the Treatment of Prion Diseases 366
9.7.2 Quinacrine for the Treatment of Prion Diseases ...... 366
9.7.3 Glimepiride for the Treatment of Prion Diseases ...... 368
9.7.4 Vaccine for the Treatment of Prion Diseases ......... 368
9.8 Conclusion .................................................. 369

References ....................................................... 370

10 Perspective and Direction for Future Developments on Neurotraumatic and Neurodegenerative Diseases ............... 383
10.1 Introduction ............................................... 383
10.2 Factors Contributing to Increased Frequency of Neurotraumatic and Neurodegenerative Diseases ................. 385
10.2.1 Diet and Frequency of Occurrence of Neurotraumatic and Neurodegenerative Diseases ................. 386
10.2.2 Detection of Neurotraumatic and Neurodegenerative Diseases .................................. 387
10.3 Proteomics and Lipidomics in Neurotraumatic and Neurodegenerative Diseases .............................. 388
10.4 Vaccines for the Treatment of Neurotraumatic and Neurodegenerative Diseases ............................. 389
10.5 Reasons for the Failure of Treatment in Neurotraumatic and Neurodegenerative Diseases ............................ 390
10.6 Future Studies on the Treatment of Neurotraumatic and Neurodegenerative Diseases ............................ 391
10.7 Conclusion .................................................. 393

References ....................................................... 394

Index .......................................................... 399
Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases
Farooqui, A.A.
2010, XXIII, 401 p., Hardcover
ISBN: 978-1-4419-6651-3