Contents

Part I Principles of Biophysical Inquiry

1 Introduction: To the Student – First Edition .. 3

2 Philosophy and Practice of Biophysical Study .. 5
 2.1 What Is Biophysical Chemistry and Why Study It? 5
 2.2 Science Is Not Content but a Unique Method of Discovery 6
 2.3 The Progression of Inquiry Guides the Scientific Modeling Process 8
 2.4 A Brief History of Human Methods of Inquiry Reveals Important Aspects of the Scientific Method 9
 2.5 The Gedanken Experiment Is a Thought Experiment 12
 2.6 The Beginnings of Modern Science- Kepler and Galileo 14
 2.7 Modern Biophysical Studies Still Follow the Paradigm of Kepler and Galileo ... 16
 2.7.1 Describe the Phenomenon – What Is happening Here? What Are the Emergent Properties of the System? 16
 2.7.2 Reduce the Phenomenon to a Systems Description: Identify the Components of a System – Who and What Is Involved? (What Are the Elements?) 17
 2.7.3 Analysis of Structure – What Does it Look Like? What Are the Relationships Between the Components? (What Are the Interaction Rules and What Is the Context of the System?) 17
 2.7.4 Analysis of Dynamic Function – What Is the Mechanistic or Explanatory Cause of That? 18
 Further Reading ... 20
 Problem Sets ... 22
3 Overview of the Biological System Under Study

3.1 Hierarchies of Abstraction Are Essential in the Study of Biophysical Chemistry

3.2 An Overview of the Cell: The Essential Building Block of Life

3.2.1 The Cell Membrane Is a Physical Boundary Between the Cell System and Its Surroundings but This Membrane Is Also Part of the Biological System

3.2.2 The Cytoplasmic Space Is the Matrix of the Intracellular System

3.2.3 The Organelles Are Subsystems that Are Found Within the Cytoplasmic Space but Have Unique Environments and Are Therefore Complex Physical Systems

3.2.4 The Nuclear Space Is an Intracellular Space that Is Separated from the Cytoplasmic Space Because of the Systems Interactions

3.3 Control Mechanisms Are Essential Process Elements of the Biological State Space

3.4 Biological Energy Transduction Is an Essential Process that Provides Energy to Ensure the High Degree of Organization Necessary for Life

3.5 The Cell Is a Building Block of Chemical and Biological Organization and Also a Key to the Study of Biological Complexity

3.6 A Brief History of Life

3.7 Evolution Can Be Modeled as a Dynamic Process with Many Bifurcations in the State Space of Life

3.7.1 The Scarcity of Energy and Chemical Resources Is a Fundamental Challenge Encountered in Biological Evolution

3.7.2 The Biochemical Solution to the Energy Limitations Created a New Waste Problem: Global Oxygenation

3.7.3 The Response to the New Biochemical Environment Resulted in a Biological Bifurcation: The Appearance of the Eukaryotic Cell

3.7.4 Compartmentalization Is an Important Reordering of Physiochemical Relationships that Changes the Physical Environment from Solution Dominated to Surface Dominated

Further Reading

Problem Sets
4 Physical Thoughts, Biological Systems – The Application of Modeling Principles to Understanding Biological Systems . 57
4.1 The Interaction Between Formal Models and Natural Systems Is the Essence of Physical and Biophysical Science . 57
4.2 Observables Are the Link Between Observer and Reality . 58
4.3 Systems Science Guides the Linkage of Natural and Formal Models . 60
4.4 Abstraction and Approximation May Be Useful but Are Not Always Correct . 61
4.5 The Choices Made in Observables and Measurement Influence What Can Be Known About a System . 62
4.6 The Simplifying Concept of Abstraction Is Central to Both Scientific Understanding and Misconception . 64
4.7 Equations of State Capture the System Behavior or “Systemness” . 65
4.8 Equivalent Descriptions Contain the Same Information . 67
4.9 Symmetry and Symmetry Operations Allow Molecules to Be Placed in Groups . 69
4.10 The Goodness of the Model Depends on Where You Look with Bifurcation Leading to New Discovery . 71
4.11 Bifurcations in State Space Characterize Complex Systems . 72
4.12 Catastrophes and Chaos Are Examples of Formal Mathematical Systems That May Capture Important Behaviors of Natural Systems . 74
Further Reading . 78
Problem Sets . 80
5 Probability and Statistics . 81
5.1 An Overview of Probability and Statistics . 82
5.2 Discrete Probability Counts the Number of Ways Things Can Happen . 82
5.3 Specific Techniques Are Needed for Discrete Counting . 84
5.3.1 Multiplication Counts Possible Outcomes of Successive Events . 85
5.3.2 Permutations Are Counts of Lineups . 86
5.3.3 Combinations Are Counts of Committees . 86
5.3.4 Counting Indistinguishable Versus Distinguishable Entities Require Different Techniques . 87
5.4 Counting Conditional and Independent Events That Occur in Multistage Experiments Require Special Considerations . 87
5.5 Discrete Distributions Come from Counting Up the Outcomes of Repeated Experiments . 89
5.5.1 The Multinomial Coefficient . 89
5.5.2 The Binomial Distribution Captures the Probability of Success in the Case of Two Possible Outcomes 91
5.5.3 The Poisson Distribution Requires Fewer Parameters for Calculation Than the Binomial Distribution 91
5.6 Continuous Probability Is Represented as a Density of Likelihood Rather Than by Counting Events 94
5.6.1 Some Mathematical Properties of Probability Density Functions ... 95
5.6.2 The Exponential Density Function Is Useful for Lifetime Analysis ... 98
5.6.3 The Gaussian Distribution Is a Bell-Shaped Curve 99
5.6.4 Stirling’s Formula Can Be Used to Approximate the Factorials of Large Numbers ... 101
5.6.5 The Boltzmann Distribution Finds the Most Probable Distribution of Particles in Thermal Equilibrium 102

Further Reading .. 105
Problem Sets .. 105

Part II Foundations

6 Energy and Force – The Prime Observables 109
6.1 Experimental Models Are a Careful Abstraction of Either Descriptive or Explanatory Models 109
6.2 Potential Energy Surfaces Are Tools that Help Find Structure Through the Measurement of Energy 110
6.3 Conservative Systems Find Maximal Choice by Balancing Kinetic and Potential Energies Over Time 113
6.4 Forces in Biological Systems Do the Work That Influences Structure and Function .. 115
6.4.1 The Concept of Forces and Fields Is Derived from Newton’s Laws of Motion ... 115
6.4.2 Force and Mass Are Related Through Acceleration 116
6.4.3 The Principle of Conservation Leads to the Concept of a Force Field ... 117
6.4.4 Energy Is a Measure of the Capacity to Do Work 118

Further Reading .. 122
Problem Sets .. 123

7 Biophysical Forces in Molecular Systems 125
7.1 Form and Function in Biomolecular Systems Are Governed by a Limited Number of Forces 126
7.2 Mechanical Motions Can Describe the Behavior of Gases and the Migration of Cells

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1 Motion in One and Two Dimensions</td>
<td>127</td>
</tr>
<tr>
<td>7.2.2 Motion Under Constant Acceleration</td>
<td>128</td>
</tr>
<tr>
<td>7.2.3 Projectile Motion in a Constant Potential Energy Field</td>
<td>129</td>
</tr>
</tbody>
</table>

7.3 The Kinetic Theory of Gases Explains the Properties of Gases Based on Mechanical Interactions of Molecules

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1 Collisions Are Impacts in Which Objects Exchange Momentum</td>
<td>130</td>
</tr>
<tr>
<td>7.3.2 Reviewing the Phenomenology of Dilute Gases Sheds Light on Molecular Mechanics</td>
<td>131</td>
</tr>
<tr>
<td>7.3.3 The Pressure of a Gas Is Derived from the Transfer of an Extremely Small Amount of Momentum from an Atom to the Wall of a Vessel</td>
<td>134</td>
</tr>
<tr>
<td>7.3.4 The Law of Equipartition of Energy Is a Classical Treatment of Energy Distribution</td>
<td>138</td>
</tr>
<tr>
<td>7.3.5 The Real Behavior of Gases Can Be Better Modeled by Accounting for Attractive and Repulsive Forces Between Molecules</td>
<td>141</td>
</tr>
</tbody>
</table>

7.4 The Electric Force Is the Essential Interaction that Leads to the Chemical Nature of the Universe

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.1 Electrostatics Define Electrical Forces Between Stationary Charges</td>
<td>144</td>
</tr>
<tr>
<td>7.4.2 The Electric Field Is Associated with a Charged Object</td>
<td>147</td>
</tr>
<tr>
<td>7.4.3 Electric Dipoles Are Opposite Charges that Are Separated in Space</td>
<td>151</td>
</tr>
<tr>
<td>7.4.4 The Electric Flux Is a Property of the Electric Field</td>
<td>152</td>
</tr>
<tr>
<td>7.4.5 Gauss’ Law Relates the Electric Field to an Electric Charge</td>
<td>153</td>
</tr>
<tr>
<td>7.4.6 A Point Charge Will Accelerate in an Electric Field</td>
<td>154</td>
</tr>
<tr>
<td>7.4.7 The Electric Potential Is the Capacity to Do Electrical Work</td>
<td>155</td>
</tr>
<tr>
<td>7.4.8 Equipotential Surfaces Are Comprised of Lines of Constant Potential</td>
<td>158</td>
</tr>
<tr>
<td>7.4.9 Calculating Potential Fields</td>
<td>158</td>
</tr>
<tr>
<td>7.4.10 Capacitors Store Electrostatic Field Energy</td>
<td>160</td>
</tr>
</tbody>
</table>

7.5 Wave Motion Is Important in Electromagnetic and Mechanical Interactions in Biological Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.1 Pulses Are the Starting Point for Understanding Wave Motion</td>
<td>163</td>
</tr>
<tr>
<td>7.5.2 The Wavefunction Is a Mathematical Expression for Wave Motion in Terms of Space and Time</td>
<td>164</td>
</tr>
</tbody>
</table>
7.5.3 Superposition and Interference Are Fundamental Properties of Wave Interaction 165
7.5.4 The Velocity of a Wave Pulse Is a Function of the Transmission Medium 166
7.5.5 Reflection and Transmission of a Wave Depends on the Interface Between Two Phases of Different Speeds of Propagation 167
7.6 Harmonic Waves Are the Result of a Sinusoidal Oscillation 167
 7.6.1 Wavelength, Frequency, and Velocity 168
 7.6.2 Polarization 169
 7.6.3 Superposition and Interference – Waves of the Same Frequency 171
7.7 Energy and Intensity of Waves 174
 7.7.1 Sound and Human Ear 175
7.8 Standing Waves 176
7.9 Superposition and Interference – Waves of Different Frequencies 179
7.10 Complex Waveforms 181
7.11 Wave Packets 182
7.12 Dispersion 184
7.13 The Wave Equation 185
7.14 Waves in Two and Three Dimensions 186
Further Reading 189
Problem Sets 189

8 Physical Principles: Quantum Mechanics 191
 8.1 The Story of the Discovery of Quantum Mechanics Is an Instructive History of How Scientific Ideas Are Modified 192
 8.2 From the Standpoint of the Philosophy of Epistemological Science, the Quantum Revolution Ended an Age of Certainty 192
 8.3 The Ultraviolet Catastrophe Is a Term That Refers to a Historical Failure of Classical Theory 194
 8.3.1 Thermal Radiation 195
 8.3.2 Blackbody Radiation 195
 8.3.3 Classical Theory of Cavity Radiation 197
 8.3.4 Planck’s Theory of Cavity Radiation 199
 8.3.5 Quantum Model Making – Epistemological Reflections on the Model 200
 8.4 The Concept of Heat Capacity Was Modified by Quantum Mechanical Considerations 202
 8.5 The Photoelectric Effect and the Photon-Particle Properties of Radiation Could Be Understood Using Planck’s Quanta 203
 8.6 Electromagnetic Radiation Has a Dual Nature 205
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td></td>
<td>de Broglie’s Postulate Defines the Wavelike Properties of Particles</td>
<td>206</td>
</tr>
<tr>
<td>8.8</td>
<td></td>
<td>The Electron Microscope Employs Particles as Waves to Form Images</td>
<td>207</td>
</tr>
<tr>
<td>8.9</td>
<td></td>
<td>The Uncertainty Principle Is an Essential Conclusion of the Quantum Viewpoint</td>
<td>209</td>
</tr>
<tr>
<td>8.10</td>
<td></td>
<td>An Historical Approach to Understanding Atomic Structure and the Atom</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>8.10.1</td>
<td>Atomic Spectra</td>
<td>213</td>
</tr>
<tr>
<td>8.10</td>
<td>8.10.2</td>
<td>Bohr’s Model</td>
<td>215</td>
</tr>
<tr>
<td>8.11</td>
<td></td>
<td>Quantum Mechanics Requires the Classical Trajectory Across a Potential Energy Surface to be Replaced by the Wavefunction</td>
<td>218</td>
</tr>
<tr>
<td>8.12</td>
<td>8.11.1</td>
<td>The Schrödinger Equation</td>
<td>220</td>
</tr>
<tr>
<td>8.12</td>
<td></td>
<td>Solutions to the Time-Independent Schrödinger Theory</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>8.12.1</td>
<td>Linear Motion – Zero Potential Field</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>8.12.2</td>
<td>The Step Potential</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>8.12.3</td>
<td>The Barrier Potential</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>8.12.4</td>
<td>The Square Well Potential</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>8.12.5</td>
<td>The Harmonic Oscillator</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>8.12.6</td>
<td>Rotational and Angular Motion</td>
<td>233</td>
</tr>
<tr>
<td>8.13</td>
<td></td>
<td>Building the Atomic Model – One-Electron Atoms</td>
<td>235</td>
</tr>
<tr>
<td>8.14</td>
<td></td>
<td>Building the Atomic Model – Multi-electron Atoms</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>8.14.1</td>
<td>Fermions and Bosons</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>8.14.2</td>
<td>Self-Consistent Field Theory Finds Approximate Wavefunctions for Multi-electron Atoms</td>
<td>239</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Problem Sets</td>
<td></td>
<td></td>
<td>241</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Chemical Principles</td>
<td>243</td>
</tr>
<tr>
<td>9.1</td>
<td></td>
<td>Knowing the Distribution of Electrons in Molecules Is Essential for Understanding Chemical Structure and Behavior</td>
<td>243</td>
</tr>
<tr>
<td>9.2</td>
<td></td>
<td>The Nature of Chemical Interactions</td>
<td>244</td>
</tr>
<tr>
<td>9.3</td>
<td></td>
<td>Electrostatic Forces Describe the Interactions from Salt Crystals to van der Waals Attraction</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>9.3.1</td>
<td>Ion–Ion Interactions</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>9.3.2</td>
<td>Ion–Dipole Interactions</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>9.3.3</td>
<td>Ion-Induced Dipole Interactions</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>9.3.4</td>
<td>van der Waals Interactions</td>
<td>246</td>
</tr>
<tr>
<td>9.4</td>
<td></td>
<td>Covalent Bonds Involve a True Sharing of Electrons Between Atoms</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>9.4.1</td>
<td>Lewis Structures Are a Formal Shorthand that Describe Covalent Bonds</td>
<td>250</td>
</tr>
</tbody>
</table>
Contents

9.4.2 VSEPR Theory Predicts Molecular Structure

9.4.3 Molecular Orbital Theory Is an Approximation to a Full Quantum Mechanical Treatment of Covalent Interactions

9.5 Hydrogen Bonds Are a Unique Hybrid of Interactions and Play a Fundamental Role in the Behavior of Biological Systems

9.6 Biological Systems Are Made from a Limited Number of Elements

Further Reading

Problem Sets

10 Measuring the Energy of a System: Energetics and the First Law of Thermodynamics

10.1 Historically Heat Was Thought to Be a Fluid or “the Caloric”

10.2 The Thermodynamic Modeling Space Is a Systemic Approach to Describing the World

10.2.1 Systems, Surroundings, and Boundaries

10.2.2 Properties of a Thermodynamic System

10.2.3 Extensive and Intensive Variables

10.2.4 The State of a System

10.2.5 How Many Properties Are Required to Define the State of a System?

10.2.6 Changes in State

10.3 The First Law States that “The Energy of the Universe Is Conserved”

10.3.1 Specialized Boundaries Are Important Tools for Defining Thermodynamic Systems

10.3.2 Evaluating the Energy of a System Requires Measuring Work and Heat Transfer

10.4 The Heat Capacity Is a Property that Can Reflect the Internal Energy of a System

10.5 Enthalpy Is Defined When a System Is Held at Constant Pressure

Thought Questions

Further Reading

Problem Sets

11 Entropy and the Second Law of Thermodynamics

11.1 The Arrow of Time and Impossible Existence of Perpetual Motion Machines Are Both Manifestations of the Second Law of Thermodynamics

11.1.1 The Movement of a System Toward Equilibrium Is the Natural Direction

11.2 The Design of a Perfect Heat Engine Is an Important Thought Experiment
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.1</td>
<td>Reversible Paths Have Unique Properties Compared to Irreversible Paths</td>
<td>296</td>
</tr>
<tr>
<td>11.2.2</td>
<td>A Carnot Cycle Is a Reversible Path Heat Engine</td>
<td>301</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Entropy Is the Result of the Consideration of a Carnot Cycle</td>
<td>305</td>
</tr>
<tr>
<td>11.3</td>
<td>A Mechanical/Kinetic Approach to Entropy</td>
<td>307</td>
</tr>
<tr>
<td>11.3.1</td>
<td>The Statistical Basis of a Mechanistic Theory Is Reflected by System Properties</td>
<td>308</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Fluctuations Can Be Measured Statistically</td>
<td>309</td>
</tr>
<tr>
<td>11.4</td>
<td>Statistical Thermodynamics Yields the Same Conclusions as Classical Treatment of Thermodynamics</td>
<td>310</td>
</tr>
<tr>
<td>11.4.1</td>
<td>The Ensemble Method Is a Thought Experiment Involving Many Probability Experiments</td>
<td>310</td>
</tr>
<tr>
<td>11.4.2</td>
<td>The Canonical Ensemble Is an Example of the Ensemble Method</td>
<td>312</td>
</tr>
<tr>
<td>11.4.3</td>
<td>The Distribution of Energy Among Energy States Is an Important Description of a System</td>
<td>316</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Heat Flow Can Be Described Statistically</td>
<td>317</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Internal Molecular Motions, Energy and Statistical Mechanics Are Related by a Partition Function</td>
<td>320</td>
</tr>
<tr>
<td>11.5</td>
<td>Entropy Can Be Described and Understood on a Statistical Basis</td>
<td>321</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Different Statistical Distributions Are Needed for Different Conditions</td>
<td>321</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Phenomenological Entropy Can Be Linked to Statistical Entropy</td>
<td>323</td>
</tr>
<tr>
<td>11.6</td>
<td>The Third Law of Thermodynamics Defines an Absolute Measure of Entropy</td>
<td>324</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>324</td>
</tr>
<tr>
<td>Problem Sets</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>12</td>
<td>Which Way Is That System Going? The Gibbs Free Energy</td>
<td>327</td>
</tr>
<tr>
<td>12.1</td>
<td>The Gibbs Free Energy Is a State Function that Indicates the Direction and Position of a System’s Equilibrium</td>
<td>327</td>
</tr>
<tr>
<td>12.2</td>
<td>The Gibbs Free Energy Has Specific Properties</td>
<td>329</td>
</tr>
<tr>
<td>12.3</td>
<td>The Free Energy Per Mole, μ, Is an Important Thermodynamic Quantity</td>
<td>333</td>
</tr>
<tr>
<td>12.4</td>
<td>The Concept of Activity Relates an Ideal System to a Real System</td>
<td>333</td>
</tr>
<tr>
<td>12.5</td>
<td>The Application of Free Energy Considerations to Multiple-Component Systems</td>
<td>334</td>
</tr>
</tbody>
</table>
12.6 The Chemical Potential Is an Important Driving Force in Biochemical Systems

- **12.6.1 Characteristics of μ**

12.7 Entropy and Enthalpy Contribute to Calculations of the Free Energy of Mixing

12.8 Finding the Chemical Equilibrium of a System Is Possible by Making Free Energy Calculations

- **12.8.1 Derivation of the Activity**
- **12.8.2 Activity of the Standard State**
- **12.8.3 The Equilibrium Expression**

12.9 The Thermodynamics of Galvanic Cells Is Directly Related to the Gibbs Free Energy

12.10 Free Energy Changes Relate the Equilibrium Position of Biochemical Reactions

Further Reading

Problem Sets

13 The Thermodynamics of Phase Equilibria

- **13.1 The Concept of Phase Equilibrium Is Important in Biochemical Systems**
- **13.2 Thermodynamics of Transfer Between Phases**
- **13.3 The Phase Rule Relates the Number of Variables of State to the Number of Components and Phases at Equilibrium**
- **13.4 The Equilibrium Between Different Phases Is Given by the Clapeyron Equation**
 - **13.4.1 Colligative Properties Vary with Solute Concentration**
 - **13.4.2 The Activity Coefficient Can Be Measured by Changes in the Colligative Properties**
- **13.5 Surface Phenomena Are an Important Example of Phase Interaction**
- **13.6 Binding Equilibria Relate Small Molecule Binding to Larger Arrays**
 - **13.6.1 Binding at a Single Site**
 - **13.6.2 Multiple Binding Sites**
 - **13.6.3 Binding When Sites Are Equivalent and Independent**
 - **13.6.4 Equilibrium Dialysis and Scatchard Plots**
 - **13.6.5 Binding in the Case of Non-equivalent Sites**
 - **13.6.6 Cooperativity Is a Measure of Non-independent Binding**
 - **13.6.7 The Acid–Base Behavior of Biomolecules Reflects Proton Binding**
- **Further Reading**
- **Problem Sets**
Part III Building a Model of Biomolecular Structure

14 Water: A Unique Solvent and Vital Component of Life

14.1 An Introduction to the Most Familiar of All Liquids

14.2 The Physical Properties of Water Are Consistent with a High Degree of Intermolecular Interaction

14.3 Considering the Properties of Water as a Liquid

14.4 The Structure of Monomolecular Water Can Be Described Using a Variety of Models

14.5 The Capacity of Water to Form Hydrogen Bonds Underlies Its Unusual Properties

14.6 The Structure and Dynamics of Liquid Water Results in “Ordered Diversity” That Is Probably Distinct from Ice

14.7 Hydrophobic Forces Reference Interactions Between Water and Other Molecules

Further Reading

Problem Sets

15 Ion–Solvent Interactions

15.1 The Nature of Ion-Solvent Interactions Can Be Discovered Through the Progression of Inquiry

15.2 The Born Model Is a Thermodynamic Cycle That Treats the Interaction Energy Between a Simplified Ion and a Structureless Solvent

15.2.1 Building the Model

15.2.2 Choosing an Experimental Observable to Test the Model

15.3 Adding Water Structure to the Solvent Continuum

15.3.1 The Energy of Ion–Dipole Interactions Depends on Geometry

15.3.2 Dipoles in an Electric Field: A Molecular Picture of the Dielectric Constants

15.3.3 What Happens When the Dielectric Is Liquid Water?

15.4 Extending the Ion–Solvent Model Beyond the Born Model

15.4.1 Recalculating the New Model

15.5 Solutions of Inorganic Ions

15.6 Ion–Solvent Interactions in Biological Systems

Further Reading

Problem Sets

16 Ion–Ion Interactions

16.1 Ion–Ion Interactions Can Be Modeled and These Models Can Be Experimentally Validated and Refined

16.2 The Debye–Hückel Model Is a Continuum Model That Relates a Distribution of Nearby Ions to a Central Reference Ion
16.3 The Predictions Generated by the Debye–Hückel Model Can Be Experimentally Evaluated 453
16.4 More Rigorous Treatment of Assumptions Leads to an Improved Performance of the Debye–Hückel Model . 455
16.5 Consideration of Other Interactions Is Necessary to Account for the Limits of the Debye–Hückel Model 457
16.5.1 Bjerrum Suggested That Ion Pairing Could Affect the Calculation of Ion–Ion Interactions 457
Further Reading .. 458
Problem Sets .. 459

17 Lipids in Aqueous Solution .. 461
17.1 Biological Membranes Form at the Interface Between Aqueous and Lipid Phases 461
17.2 Aqueous Solutions Can Be Formed with Small Nonpolar Molecules 462
17.3 Aqueous Solutions of Organic Ions Are an Amalgam of Ion-Solvent and Nonpolar Solute Interaction 465
17.3.1 Solutions of Small Organic Ions 465
17.3.2 Solutions of Large Organic Ions 466
17.4 Lipids Can Be Placed into Several Major Classes ... 468
17.5 The Organization of Lipids into Membranes Occurs When Aqueous and Lipid Phases Come in Contact 474
17.6 The Physical Properties of Lipid Membranes ... 478
17.6.1 Phase Transitions in Lipid Membranes 478
17.6.2 There Are Specific and Limited Motions and Mobilities Found in Membranes 479
17.7 Biological Membranes: A More Complete Picture .. 482
Further Reading .. 483

18 Macromolecules in Solution .. 485
18.1 The Physical Interactions of Polymers in Solution Are Not Unique but Modeling the Interactions Will Require Different Considerations Than Those of Smaller Molecules ... 486
18.2 Thermodynamics of Solutions of Polymers ... 487
18.2.1 The Entropy of Mixing for a Polymer Solution Requires a Statistical Approach 489
18.2.2 The Enthalpy of Mixing in a Polymer Solution Is Dominated by van der Waals Interactions 493
18.2.3 The Free Energy of Mixing Relates Enthalpy and Entropy in the Standard Manner 498
18.2.4 Calculation of the Partial Specific Volume and Chemical Potential 499
18.2.5 Vapor Pressure Measurements Can Experimentally Be Used to Indicate Interaction Energies .. 504
18.3 The Conformation of Simple Polymers Can Be Modeled by a Random Walk and a Markov Process 505
18.4 The Major Classes of Biochemical Species Form Macromolecular Structures 506
18.4.1 Nucleic Acids Are the Basis for Genetic Information Storage and Processing 506
18.4.2 Carbohydrate Polymers Are Dominated by Hydrophilic Interactions with Water 513
18.4.3 The Polymers of Amino Acids, Proteins Are by Far the Most Diverse and Complex of All Biological Polymer Families 515
18.5 Nonpolar Polypeptides in Solution 523
18.6 Polar Polypeptides in Solution 527
18.7 Transitions of State .. 531
18.8 The Protein Folding Problem 538
18.9 Pathological Protein Folding 542
18.9.1 Alzheimer’s Disease 544
18.9.2 Familial Amyloidotic Polyneuropathy 545
18.9.3 Spongiform Encephalopathies 546
Further Reading .. 549
Problem Sets .. 551

19 Molecular Modeling – Mapping Biochemical State Space 553
19.1 The Prediction of Macromolecular Structure and Function Is a Goal of Molecular Modeling 553
19.2 Molecular Modeling Is Built on Familiar Principles 554
19.3 Empirical Methods Use Carefully Constructed Physical Models .. 555
19.3.1 Sticks and Stones ... 555
19.3.2 The Ramachandran Plot Is the “Art of the Possible” 557
19.3.3 Secondary Structure Prediction in Proteins Is an Important Challenge in Molecular Modeling ... 563
19.4 Computational Methods Are the Ultimate Gedanken Experiments .. 569
19.5 Molecular Mechanics Is a Newtonian or Classical Mechanical Modeling Approach 571
19.5.1 Bond Stretching .. 574
19.5.2 Bond Bending ... 576
19.5.3 Torsional or Dihedral Potential Functions 576
19.5.4 van der Waals Interactions 577
19.5.5 Electrostatic Interactions 578
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.6</td>
<td>Quantum Mechanical Methods Are Computational Difficult but Theoretically “Pure”</td>
<td>579</td>
</tr>
<tr>
<td>Further Reading</td>
<td>581</td>
<td></td>
</tr>
<tr>
<td>Problem Sets</td>
<td>582</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>The Electrified Interphase</td>
<td>583</td>
</tr>
<tr>
<td>20.1</td>
<td>The Interphase Is Formed When Phases Meet</td>
<td>583</td>
</tr>
<tr>
<td>20.2</td>
<td>A Detailed Structural Description of the Interphase Is a Task for Physical Study</td>
<td>587</td>
</tr>
<tr>
<td>20.3</td>
<td>The Simplest Picture of the Interphase Is the Helmholtz–Perrin Model</td>
<td>589</td>
</tr>
<tr>
<td>20.4</td>
<td>The Balance Between Thermal and Electrical Forces Is Seen as Competition Between Diffuse-Layer Versus Double-Layer Interphase Structures</td>
<td>590</td>
</tr>
<tr>
<td>20.5</td>
<td>The Stern Model Is a Combination of the Capacitor and Diffuse Layer Models</td>
<td>591</td>
</tr>
<tr>
<td>20.6</td>
<td>A More Complete Picture of the Double-Layer Forms with Added Detail</td>
<td>593</td>
</tr>
<tr>
<td>20.7</td>
<td>Colloidal Systems and the Electrified Interface Give Rise to the Lyophilic Series</td>
<td>595</td>
</tr>
<tr>
<td>20.8</td>
<td>Salting Out Can Be Understood in Terms of Electrified Interphase Behavior</td>
<td>599</td>
</tr>
<tr>
<td>Further Reading</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Problem Sets</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Part IV</td>
<td>Function and Action Biological State Space</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Transport – A Non-equilibrium Process</td>
<td>605</td>
</tr>
<tr>
<td>21.1</td>
<td>Transport Is an Irreversible Process and Does Not Occur at Equilibrium</td>
<td>605</td>
</tr>
<tr>
<td>21.2</td>
<td>The Principles of Non-equilibrium Thermodynamics Can Be Related to the More Familiar Equilibrium Treatment with the Idea of Local Equilibrium</td>
<td>606</td>
</tr>
<tr>
<td>Further Reading</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Flow in a Chemical Potential Field: Diffusion</td>
<td>611</td>
</tr>
<tr>
<td>22.1</td>
<td>Transport in Chemical, Electrical, Pressure, and Thermal Gradients Are All Treated with the Same Mathematics</td>
<td>611</td>
</tr>
<tr>
<td>22.2</td>
<td>Diffusion or the Flow of Particles Down a Concentration Gradient Can Be Described Phenomenologically</td>
<td>612</td>
</tr>
<tr>
<td>22.3</td>
<td>The Random Walk Forms the Basis for a Molecular Picture of Flux</td>
<td>616</td>
</tr>
<tr>
<td>Further Reading</td>
<td>622</td>
<td></td>
</tr>
<tr>
<td>Problem Sets</td>
<td>622</td>
<td></td>
</tr>
</tbody>
</table>
23 Flow in an Electric Field: Conduction

23.1 Transport of Charge Occurs in an Electric Field

23.1.1 Ionic Species Can Be Classified as True or Potential Electrolytes

23.2 Describing a System of Ionic Conduction Includes Electronic, Electrodisc, and Ionic Elements

23.3 The Flow of Ions Down a Electrical Gradient Can Be Described Phenomenologically

23.4 A Molecular View of Ionic Conduction

23.5 Interionic Forces Affect Conductivity

23.6 Proton Conduction Is a Special Case that Has a Mixed Mechanism

Further Reading

Problem Sets

24 Forces Across Membranes

24.1 Energetics and Force in Membranes

24.2 The Donnan Equilibrium Is Determined by a Balance Between Chemical and Electrical Potential in a Two-Phase System

24.3 Electric Fields Across Membranes Are of Substantial Magnitude

24.3.1 Diffusion and Concentration Potentials Are Components of the Transmembrane Potential

24.3.2 The Goldman Constant Field Equation Is an Expression Useful for Quantitative Description of the Biological Electrochemical Potential

24.4 Electrostatic Profiles of the Membrane Are Potential Energy Surfaces Describing Forces in the Vicinity of Membranes

24.5 The Electrochemical Potential Is a Thermodynamic Treatment of the Gradients Across a Cellular Membrane

24.6 Transport Through the Lipid Bilayer of Different Molecules Requires Various Mechanisms

24.6.1 Modes of Transport Include Passive, Facilitated, and Active Processes

24.6.2 Water Transport Through a Lipid Phase Involves Passive and Pore Specific Mechanisms

Further Reading

Problem Sets

25 Kinetics – Chemical Kinetics

25.1 The Equilibrium State Is Found by Chemical Thermodynamics but Chemical Kinetics Tells the Story of Getting There
25.2 A Historical Perspective on the Development of Chemical Kinetics 671
25.3 Kinetics Has a Specific and Systemic Language 675
 25.3.1 Mechanism and Order 675
25.4 Order of a Reaction Relates the Concentration of Reactants to the Reaction Velocity 676
25.5 Expressions of the Rate Laws Are Important Properties of a Reaction 677
 25.5.1 Zero Order Reactions 677
 25.5.2 First-Order Reactions 679
 25.5.3 Second-Order Reactions 680
 25.5.4 Experimental Determination of a Rate Law Requires Measurement of Two Observables, Time and Concentration 681
25.6 Elementary Reactions Are the Elements of the System That Defines a Chemical Mechanism 681
25.7 Reaction Mechanisms Are a System of Interacting Elements (Molecules) in the Context of a Potential Energy Surface 682
 25.7.1 Collision Theory 682
 25.7.2 Surprises in the Collision Theory State Space Require Re-evaluation of the Abstraction 686
 25.7.3 Transition-State Theory Is a Quantum Mechanical Extension of the Classical Flavor of Collision Theory 687
 25.7.4 The Potential Energy Surface Unifies the Models 691
25.8 Solution Kinetics Are More Complicated Than the Simple Kinetic Behavior of Gases 699
25.9 Enzymes Are Macromolecular Catalysts with Enormous Efficiency 699
 25.9.1 Enzyme Kinetics 702
 25.9.2 Enzymes Can Be Characterized by Kinetic Properties 704
 25.9.3 Enzymes Are Complex Systems Subject to Biophysical Control 707
Further Reading ... 710
Problem Sets .. 710

26 Dynamic Bioelectrochemistry – Charge Transfer in Biological Systems 713
26.1 Electrokinetics and Electron Charge Transfer Depend on Electrical Current Flow in Biochemical Systems 713
26.2 Electrokinetic Phenomena Occur When the Elements of the Biological Electrical Double Layer Experience Either Mechanical or Electrical Transport 714
Part V Methods for the Measuring Structure and Function

27 Separation and Characterization of Biomolecules Based on Macroscopic Properties

27.1 Introduction: Mechanical Motion Interacts with Mass, Shape, Charge, and Phase to Allow Analysis of Macromolecular Structure

27.2 Buoyant Forces Are the Result of Displacement of the Medium by an Object

27.2.1 Motion Through a Medium Results in a Retarding Force Proportional to Speed

27.2.2 Frictional Coefficients Can Be Used in the Analysis of Macromolecular Structure

27.2.3 The Centrifuge Is a Device that Produces Motion by Generating Circular Motion with Constant Speed

27.2.4 Sedimentation Occurs When Particles Experience Motion Caused by Gravitational or Equivalent Fields
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.2.5</td>
<td>Drag Forces on Molecules in Motion Are Proportional to the Velocity of the Particle</td>
<td>755</td>
</tr>
<tr>
<td>27.2.6</td>
<td>Fluids Will Move and Be Transported When Placed Under a Shearing Stress Force</td>
<td>756</td>
</tr>
<tr>
<td>27.3</td>
<td>Systems Study in the Biological Science Requires Methods of Separation and Identification to Describe the “State of a Biological System”</td>
<td>760</td>
</tr>
<tr>
<td>27.4</td>
<td>Electrophoresis Is a Practical Application of Molecular Motion in an Electrical Field Based on Charge and Modified by Conformation and Size</td>
<td>760</td>
</tr>
<tr>
<td>27.5</td>
<td>Chromatographic Techniques Are Based on the Differential Partitioning of Molecules Between Two Phases in Relative Motion</td>
<td>763</td>
</tr>
<tr>
<td>27.6</td>
<td>The Motion Induced by a Magnetic Interaction Is Essential for Determination of Molecular Mass in Modern Biological Investigations</td>
<td>767</td>
</tr>
<tr>
<td>27.6.1</td>
<td>Magnetic Fields Are Vector Fields of Magnetic Force that Can Be Found Throughout Space</td>
<td>768</td>
</tr>
<tr>
<td>27.6.2</td>
<td>Magnets Interact with One Another Through the Magnetic Field</td>
<td>770</td>
</tr>
<tr>
<td>27.6.3</td>
<td>Current Loops in B Fields Experience Torque</td>
<td>771</td>
</tr>
<tr>
<td>27.6.4</td>
<td>The Path of Moving Point Charges in a B Field Is Altered by the Interaction</td>
<td>771</td>
</tr>
<tr>
<td>27.6.5</td>
<td>The Mass Spectrometer Is Widely Used Following Various Separation Techniques to Characterize Biological Samples</td>
<td>772</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>775</td>
</tr>
<tr>
<td></td>
<td>Problem Sets</td>
<td>775</td>
</tr>
</tbody>
</table>

28 Analysis of Molecular Structure with Electronic Spectroscopy

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1</td>
<td>The Interaction of Light with Matter Allows Investigation of Biochemical Properties</td>
<td>780</td>
</tr>
<tr>
<td>28.2</td>
<td>The Motion of a Dipole Radiator Generates Electromagnetic Radiation</td>
<td>780</td>
</tr>
<tr>
<td>28.3</td>
<td>Optical Interactions Can Be Treated at Varying Levels of Abstraction</td>
<td>780</td>
</tr>
<tr>
<td>28.4</td>
<td>Atomic and Molecular Energy levels Are a Quantum Phenomenon That Provide a Window on Molecular Structure</td>
<td>782</td>
</tr>
<tr>
<td>28.4.1</td>
<td>There Are Points of Maximum Inflection Occurring at Particular Wavelengths</td>
<td>783</td>
</tr>
<tr>
<td>28.4.2</td>
<td>Each Maximum Has a Different Intensity</td>
<td>786</td>
</tr>
<tr>
<td>28.4.3</td>
<td>The Maxima Are Spread to Some Degree and Are Not Sharp</td>
<td>787</td>
</tr>
</tbody>
</table>
28.5 Absorption Spectroscopy Has Important Applications to Biochemical Analysis .. 789
 28.5.1 Absorption Spectroscopy Is a Powerful Tool in the Examination of Dilute Solutions 793
28.6 Fluorescence and Phosphorescence Occur When Trapped Photon Energy Is Re-radiated After a Finite Lifetime ... 794
28.7 Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) Depend on Interactions Between Photons and Molecules in a Magnetic Field 797
 28.7.1 The Solenoid Shapes the Magnetic Field in a Manner Similar to the Parallel-Plate Capacitor 798
 28.7.2 Magnetism in Matter Has Distinct Properties ... 798
 28.7.3 Atoms Can Have Magnetic Moments ... 800
 28.7.4 EPR Spectroscopy Allows Exploration of Molecular Structure by Interaction with the Magnetic Moment of an Electron ... 803
 28.7.5 NMR Spectroscopy Employs the Magnetic Properties of Certain Nuclei for Determining Structure ... 804
 28.7.6 Further Structural Information Can Be Found by NMR Studies of Nuclei Other Than Protons .. 809
Further Reading ... 812
Problem Sets ... 813

29 Molecular Structure from Scattering Phenomena 815
 29.1 The Interference Patterns Generated by the Interaction of Waves with Point Sources Is a Valuable Tool in the Analysis of Structure ... 815
 29.2 Diffraction Is the Result of the Repropagation of a Wave ... 819
 29.3 X-Ray Diffraction Is a Powerful Fool for Structure Determination ... 822
 29.4 Scattering of Light Rather Than Its Absorption Can Be Used to Probe Molecular Structure and Interaction .. 831
 29.4.1 Rayleigh Scattering .. 831
 29.4.2 Raman Scattering .. 833
 29.4.3 Circular Dichroism and Optical Rotation .. 834
Further Reading .. 835

30 Analysis of Structure – Microscopy 837
 30.1 Seeing Is Believing .. 837
 30.2 The Light Microscope Allows Visualization of Structures on the Dimensional Scale of the Wavelength of a Photon ... 839
 30.3 Visualization Requires Solving the Problem of Contrast ... 843
Contents

G.3 Image Formation by Refraction 889
G.4 Prisms and Total Internal Reflection 891

Appendix H: The Compton Effect 893

Appendix I: Hamilton’s Principle of Least Action/Fermat’s Principle of Least Time 895

Appendix J: Derivation of the Energy of Interaction Between Two Ions .. 897

Appendix K: Derivation of the Statement, \(q_{\text{rev}} > q_{\text{irrev}} \) .. 899

Appendix L: Derivation of the Clausius–Clapeyron Equation ... 901

Appendix M: Derivation of the van’t Hoff Equation for Osmotic Pressure ... 903

Appendix N: Fictitious and Pseudoforces – The Centrifugal Force .. 905

Appendix O: Derivation of the Work to Charge and Discharge a Rigid Sphere .. 907

Appendix P: Review of Circuits and Electric Current ... 909
 P.1 Current Density and Flux .. 909
 P.1.1 Ohm’s Law ... 910
 P.2 Circuits ... 911
 P.2.1 Useful Legal Relations .. 911
 P.2.2 Kirchoff’s Rules .. 911
 P.2.3 Capacitors in Series and Parallel 912
 P.2.4 Resistors in Series and Parallel 913
 P.2.5 RC Circuits and Relations .. 913
 P.3 Measuring Instruments .. 916
 P.3.1 Ammeters, Voltmeters, Ohmmeters 917

Appendix Q: Fermi’s Golden Rule .. 919

Appendix R: The Transition from Reactant to Product:
 Adiabatic and Non-adiabatic Transitions ... 921

Index .. 923
The Physical Basis of Biochemistry
The Foundations of Molecular Biophysics
Bergethon, P.R.
2010, XXX, 950 p. 200 illus., Hardcover
ISBN: 978-1-4419-6323-9