Contents

1 Questioning Chance .. 1
 1.1 Introduction .. 1
 1.2 Different Uses of the Word “Chance” in the Sciences 3
 1.2.1 Chance in Quantum Mechanics and Mechanical
 Statistics ... 4
 1.2.2 Chance for the Statistician 6
 1.2.3 Chance for the Probability Theorist 7
 1.2.4 Chance for the Numerical Analyst and the
 Computer Scientist 8
 1.2.5 Chance, Hazards, and Risks 10
 1.2.6 Life Tested by the Vagaries of the Environment
 During Its Long History 11

2 Chance in Living Systems ... 15
 2.1 Chance and Necessity .. 15
 2.1.1 The Neutral Theory of Evolution: A Gentle
 Necessity .. 16
 2.1.2 The Couple Chance-Necessity 17
 2.1.3 Randomness and Evolution: The Necessity
 of Chance .. 18
 2.1.4 From the Gene to the Ecosystem: Chance in the
 Different Organisational Levels of Living Systems 18
 2.2 Known Genetic Diversification Mechanisms 19
 2.2.1 Gene Diversification: The Randomness of One-Off
 Mutations .. 19
 2.2.2 The Organisation and Plasticity of the Genome:
 The Vagaries of Piecewise Mutations 22
 2.2.3 Reproduction and the Transmission of Genetic
 Information: Shuffling the Cards 27
 2.3 The Cell and the Organism: A Limited Randomness 31
 2.3.1 A Living Machine ... 31
 2.3.2 Individual Homogeneity, the Diversity
 of Organisms .. 31
2.3.3 A Cooperative Structure 33
2.3.4 A Limited, But Efficient Randomness: The Immune and Olfactory Systems 35
2.3.5 Using the Vagaries of the Environment 37
2.3.6 Organisms and Changes in the Environment 37
2.3.7 Random Behaviours 37
2.4 Lineages, Populations and Species: Chance Encounters, Couplings, and Disturbances 39
2.5 The Main Sources of Biodiversity 42
2.6 Evolution and Its Theories: The Randomness of Genetic Modifications 43
2.7 Ecological Randomness: Live and Survive Together, Face Environmental Risks 46
2.7.1 The Neutral Theory of Biodiversity 49
2.7.2 Spatial Distribution: Randomness and Necessity in the Environment 50
2.7.3 Evolitional Interpretation in the Face of Risks: Necessary Diversification and the no Less Necessary Random Distribution 51
2.7.4 The Dynamics of Biodiversity 59
2.7.5 Measuring Biodiversity 63
2.8 Randomness, Chaos and Complexity 66
2.8.1 From Chaos to Randomness 67
2.8.2 Intermittences 69
2.8.3 Two Types of Randomness, Two Complexities 69
2.9 Randomness and the Organisational Levels of Living Systems ... 71
2.10 Conclusion .. 75

3 Lessons for Managing Living Systems 79
3.1 Organisms .. 79
3.2 Populations and Ecosystems 80
3.3 Biodiversity ... 81
3.4 Information and Genetic Heritage 82
3.5 Conserving Genetic Resources 82
3.6 Genetic Modification: Hybridisation and Selection 82
3.7 Genetic Manipulation: Gene Insertion 84
3.8 Cloning ... 85
3.9 Active Molecules of Biological Origin 86
3.10 Ecotoxicology .. 87
3.11 The Limits and Consequences of Mankind’s Intervention on Living Systems 88
3.12 Bio-inspired and Bio-mimetic Technologies 89
4 The Contribution of Models and Modelling: Some Examples

4.1 Genetics and Calculating Probability: Elementary Laws and Evolution During the Genetic Constitution of a Population

4.1.1 The Mendelian Model

4.1.2 Genetic Evolution of an Autogamous Population

4.2 From Chaos to Randomness: Biological Roulettes – An Example from the Discrete-Time Logistic Model

4.2.1 Discrete-Time Logistic Model

4.2.2 Analysis of the Simultaneous Dynamics of Two Populations

4.2.3 From the Erratic to the Regular: The Effect of Pairing

4.2.4 From Chaos to Randomness

4.3 The Continuous-Time Logistic Model and the Evolution of Biodiversity

4.4 Towards a General Schema for Modelling Living Systems and Their Diversities

5 Biodiversity and Ecological Theories

5.1 The Niche Theory

5.2 Niches and the Logistic Model

5.3 The Neutral Theory of Biodiversity

5.4 Can We Reconcile the Two Approaches?

5.5 A Set of Processes to Explain the Spatial Distribution of Individuals in Diversified Systems by Species

5.6 Chance at the Heart of Natural Ecosystems?

6 Chance and Evolution

6.1 Evolution ... But It’s Very Simple

6.2 And Chance in All of That?

6.3 “Biological Roulettes”: Products and Engines of Evolution

6.4 Chance, Complexity and Biodiversity

6.5 Evolution and the Self-organisation of Living Systems and ... Others

7 Evaluating Biodiversity: The Example of French Guiana

7.1 A Large Diversity

7.2 Species Diversity and Its Evaluation: Data, Certainties and Uncertainties

7.2.1 The First Problem: Classification and Botanical Practices

7.2.2 The Second Problem: Field Access and the Field Itself

7.2.3 The Third Problem: Forestry and Ecological Data

7.2.4 Evaluation: A Draft Solution Using a Simple Model

7.2.5 Conclusion

7.3 Biodiversity on a Large, Physical Scale
7.4 Multi-scale and Multi-level Observations: From the Gene to the Ecosystem .. 146
7.5 A Very Favourable Terrain for Research on Biodiversity and its Dynamics .. 148

8 Conclusion ... 153
8.1 Living Things: Deterministic or Stochastic Machines? 153
8.2 Chance and Evolution ... 154
8.3 Chance is Everywhere in Biological Systems 155
8.4 Internal Processes Generating Random Events 155
8.5 Some Experiments and Much Observation 157
8.6 The Beginning of New Ways of Conducting Research? 159

Glossary ... 161
References ... 167
Further Reading .. 175
Index ... 177
On the Origins and Dynamics of Biodiversity: the Role of Chance
Pavé, A.
2010, XVIII, 178 p., Hardcover
ISBN: 978-1-4419-6243-0