Contents

Part I Dynamic Spectrum Access

1 Distributed Consensus-Based Cooperative Spectrum Sensing in Cognitive Radio Mobile Ad Hoc Networks ... 3
F. Richard Yu, Helen Tang, Minyi Huang, Peter Mason, and Zhiqiang Li
1.1 Introduction ... 3
1.2 Background ... 5
 1.2.1 Introduction of Spectrum Sensing in Cognitive Radio ... 5
 1.2.2 Mobile Ad Hoc Networks 9
 1.2.3 Distributed Consensus-Based Cooperative Spectrum Sensing Scheme ... 10
1.3 Secondary Users Network Modeling 11
 1.3.1 Network Topology in Distributed Consensus-Based Cooperative Spectrum Sensing .. 11
 1.3.2 The Spectrum Sensing Model 12
 1.3.3 The Network Model and Consensus Notions 15
1.4 Distributed Consensus-Based Cooperative Spectrum Sensing in Fixed Graphs ... 16
 1.4.1 The Consensus Algorithm 16
 1.4.2 Performance of the Consensus Algorithm 18
1.5 Distributed Consensus-Based Cooperative Spectrum Sensing in Random Graphs ... 19
 1.5.1 Random Graph Modeling of the Network Topology 19
 1.5.2 The Algorithm with Random Graphs 19
1.6 Simulation Results and Discussions 22
 1.6.1 Distributed Consensus-Based Cooperative Spectrum Sensing ... 22
 1.6.2 Scenario Two ... 27
1.7 Conclusion ... 33
References ... 34
2 On the Spectrum Handoff for Cognitive Radio Ad Hoc Networks
Without Common Control Channel

Yi Song and Jiang Xie

2.1 Introduction
2.1.1 Spectrum Handoff in Cognitive Radio Networks
2.1.2 Common Control Channel in Cognitive Radio Networks
2.1.3 Channel Selection in Cognitive Radio Networks
2.1.4 Analytical Model for Spectrum Handoff in Cognitive Radio Networks
2.1.5 Contributions
2.1.6 Organization

2.2 Network Coordination and Assumptions
2.2.1 Single Rendezvous Coordination Scheme
2.2.2 Multiple Rendezvous Coordination Scheme
2.2.3 Network Assumptions

2.3 Proactive Spectrum Handoff Protocol
2.3.1 Proposed Spectrum Handoff Criteria and Policies
2.3.2 Proposed Spectrum Handoff Protocol Details

2.4 Distributed Channel Selection Algorithm
2.4.1 Procedure of the Proposed Channel Selection Algorithm
2.4.2 Fairness and Scalability of the Proposed Channel Selection Scheme

2.5 Performance Evaluation of the Proposed Proactive Spectrum Handoff Framework
2.5.1 Simulation Setup
2.5.2 The Proposed Proactive Spectrum Handoff Scheme
2.5.3 The Proposed Distributed Channel Selection Scheme

2.6 The Proposed Three Dimensional Discrete-time Markov Model
2.6.1 The Proposed Markov Model
2.6.2 Derivation of Steady-State Probabilities
2.6.3 The Probability That at Least One Channel Is Idle
2.6.4 Results Validation
2.6.5 The Impact of Spectrum Sensing Delay

2.7 Conclusion

References

3 Environment–Mobility Interaction Mapping for Cognitive MANETs
Irene Macaluso, Timothy K. Forde, Oliver Holland, and Keith E. Nolan

3.1 Introduction
3.2 The MANET as a Cognitive Network
3.3 Mobility Perturbs the MANET
4 Spectrum Sharing in DS-CDMA/OFDM

Wireless Mobile Networks

Keivan Navaie, Halim Yanikomeroglu, Mohammad G. Khoshkholgh, Ahmad R. Sharafat, and Hamidreza Nikoofar

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>91</td>
</tr>
<tr>
<td>4.2 System Model</td>
<td>93</td>
</tr>
<tr>
<td>4.3 Impact of Primary Service Activity</td>
<td>95</td>
</tr>
<tr>
<td>4.4 Opportunistic Spectrum Sharing in DS-CDMA/OFDM Systems: Basic Definitions</td>
<td>100</td>
</tr>
<tr>
<td>4.5 Single Secondary Service User</td>
<td>103</td>
</tr>
<tr>
<td>4.5.1 Uniform Sub-channel Selection</td>
<td>103</td>
</tr>
<tr>
<td>4.5.2 Non-uniform Sub-channel Selection</td>
<td>106</td>
</tr>
<tr>
<td>4.6 Multiple Secondary Service Users</td>
<td>115</td>
</tr>
<tr>
<td>4.6.1 Uniform Sub-channel Selection</td>
<td>115</td>
</tr>
<tr>
<td>4.6.2 Non-uniform Sub-channel Selection</td>
<td>116</td>
</tr>
<tr>
<td>4.6.3 Impact of Intersecondary Service Interference</td>
<td>116</td>
</tr>
<tr>
<td>4.6.4 Multiple Sub-channel Selection</td>
<td>117</td>
</tr>
<tr>
<td>4.7 Numerical Studies</td>
<td>119</td>
</tr>
<tr>
<td>4.7.1 Comparing Sub-channel Selection Policies</td>
<td>119</td>
</tr>
<tr>
<td>4.7.2 Impact of Multiple Secondary Users</td>
<td>122</td>
</tr>
<tr>
<td>4.8 Conclusions</td>
<td>124</td>
</tr>
</tbody>
</table>

References 124

Part II Medium Access Control

5 CREAM-MAC: Cognitive Radio-Enabled Multi-channel MAC for Wireless Networks

Xi Zhang and Hang Su

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>129</td>
</tr>
<tr>
<td>5.2 Related Works</td>
<td>131</td>
</tr>
<tr>
<td>5.3 The System Models</td>
<td>132</td>
</tr>
<tr>
<td>5.3.1 Primary Users’ Behaviors</td>
<td>132</td>
</tr>
<tr>
<td>5.3.2 The Spectrum Sensing Model</td>
<td>133</td>
</tr>
<tr>
<td>5.3.3 Channel Aggregating Technique</td>
<td>134</td>
</tr>
<tr>
<td>5.4 The Proposed CREAM-MAC Protocol</td>
<td>134</td>
</tr>
<tr>
<td>5.4.1 Protocol Overview</td>
<td>134</td>
</tr>
<tr>
<td>5.4.2 The Maximum Allowable Transmission Duration for SUs</td>
<td>137</td>
</tr>
<tr>
<td>5.4.3 The Selection of Licensed Channels</td>
<td>137</td>
</tr>
<tr>
<td>Contents</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.4.4 Channel Contention</td>
<td>138</td>
</tr>
<tr>
<td>5.4.5 Channel Negotiation</td>
<td>138</td>
</tr>
<tr>
<td>5.4.6 Data Transmissions</td>
<td>139</td>
</tr>
<tr>
<td>5.4.7 The Distributed Spectrum Sensing Scheme</td>
<td>140</td>
</tr>
<tr>
<td>5.5 Throughput Analysis for the Saturation Network Case</td>
<td>143</td>
</tr>
<tr>
<td>5.5.1 The Analysis for the Licensed Data Channels</td>
<td>143</td>
</tr>
<tr>
<td>5.5.2 The Analysis for the Control Channels</td>
<td>144</td>
</tr>
<tr>
<td>5.5.3 The Aggregate Throughput</td>
<td>146</td>
</tr>
<tr>
<td>5.6 Performance Analysis for the Special Non-saturation Network Case</td>
<td>148</td>
</tr>
<tr>
<td>5.7 Performance Evaluations</td>
<td>152</td>
</tr>
<tr>
<td>5.8 Conclusions</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td>157</td>
</tr>
</tbody>
</table>

6 Cognitive MAC Protocol with Transmission Tax: Probabilistic Analysis and Performance Improvements 159
Vojislav B. Mišić and Jelena Mišić

6.1 Introduction 159
6.2 The Transmission Tax-Based Protocol 162
6.3 Modeling the Protocol 164
6.4 Packet Service Cycle and Access Delay 166
6.5 Model of the Sensing Process 167
6.6 Performance of the Original Protocol 170
6.7 Can Channel Ordering Improve Sensing Accuracy? 174
6.8 Adapting the Transmission Tax 175
6.9 Conclusion 178
References 179

7 Control Channel Management in Dynamic Spectrum Access-Based Ad Hoc Networks 181
Tao Chen, Honggang Zhang, and Zhifeng Zhao

7.1 Introduction 181
7.2 Dynamic Spectrum Access and Impacts on Ad Hoc Networks 182
 7.2.1 DSA-Based Ad Hoc Networks 183
7.3 Control Channel Problems in DSA-Based Ad Hoc Networks 184
7.4 Control Channel Management in DSA-Based Ad Hoc Networks 185
 7.4.1 DSA-Based Ad Hoc Networks 185
7.5 Requirements of Control Channel Management in DSA-Based Ad Hoc Networks 188
7.6 Cloud-Based Control Channel Management 189
 7.6.1 Basic Cloud Operations 190
7.7 Dynamics of Network 193
 7.7.1 Initiation 193
 7.7.2 Loss and Return of Channels 194
Contents

7.7.3 Node Joins or Leaves Network .. 194
7.7.4 Refresh Cloud .. 195
7.8 Algorithms for Control Channel Management 195
7.9 Correctness of Cloud Formation Algorithm 197
7.10 Advantages of Cloud Approach 199
7.11 Simulation Studies .. 200
7.12 Conclusion .. 204
References .. 204

Part III Topology Control and Routing

8 Topology Control and Routing in Cognitive Radio Mobile Ad Hoc Networks .. 209
Quansheng Guan, F. Richard Yu, and Shengming Jiang
8.1 Introduction ... 209
8.2 Topology Control and Routing 210
 8.2.1 Topology Control .. 210
 8.2.2 Routing ... 212
 8.2.3 Discussions .. 213
8.3 A Prediction-Based Cognitive Topology Control in CR-MANETs .. 214
 8.3.1 Cognitive Link Availability Prediction 215
 8.3.2 Cognitive Topology Control and Routing 216
 8.3.3 Results and Discussions 219
8.4 Conclusions ... 221
References .. 222

9 Routing Schemes for Cognitive Radio Mobile Ad Hoc Networks 227
Jun Li, Yifeng Zhou, and Louise Lamont
9.1 Introduction ... 227
9.2 CR-MANET Routing Schemes 229
 9.2.1 Classification of CR-MANET Routing Schemes 229
 9.2.2 MANET Protocol-Based CR-MANET Routing 229
 9.2.3 Model-Based CR-MANET Routing 232
9.3 ARDC: A Graph Model-Based Routing Scheme 235
 9.3.1 CR-MANET Model and Routing Design Framework .. 235
 9.3.2 Topology Formation .. 237
 9.3.3 Routing Scheme .. 241
9.4 Conclusion and Discussion 246
References .. 247

10 Delay in Cognitive Radio Networks 249
Yaling Yang, Chuan Han, and Bo Gao
10.1 Introduction ... 249
10.2 Optimal Information Propagation Speed Analysis in Multihop Cognitive Radio Networks 250
10.2.1 Network Model ... 251
10.2.2 Problem Formulation .. 252
10.2.3 Network IPS ... 253
10.2.4 Flow IPS .. 258
10.2.5 Simulation and Numerical Validation 263

10.3 Delay Analysis in Single-Hop Cognitive Radios Networks 271
10.3.1 System Model ... 271
10.3.2 Delay Analysis Under Channel Aggregation 275
10.3.3 Optimal Bandwidth Duration Decision 278
10.3.4 Numerical Analysis and Simulation Results 280

10.4 Summary ... 282

References .. 283

Part IV Multimedia Transmissions

11 Real-Time Multimedia Transmission over Cognitive Radio Networks ... 287

Haiyan Luo, Song Ci, Dalei Wu, Zhiyong Feng, and Hui Tang
11.1 Introduction .. 287
11.2 Design Background ... 289
11.2.1 Game Theory ... 290
11.2.2 Cross-layer Optimization 290
11.3 System Model for Video Transmission 291
11.4 Video Quality Performance Metric 292
11.5 Channel Model ... 294
11.6 MAC Scheduling Delay .. 296
11.7 Transmission Delay .. 297
11.8 Problem Formulation and Optimal Solution 298
11.9 Experimental Analysis ... 300
11.9.1 Experimental Environment 300
11.9.2 Performance Evaluation 301
11.10 Conclusions ... 305

References .. 305

Part V Applications of Cognitive Radio Mobile Ad Hoc Networks

12 An Adaptive WiFi/WiMAX Networking Platform for Cognitive Vehicular Networks .. 311

Dusit Niyato, Ekram Hossain, and Teerawat Issariyakul
12.1 Introduction .. 311
12.1.1 Wireless Technologies 312
12.1.2 Transmission Strategies 313
12.1.3 Medium Access Control Protocols 313
12.1.4 Distributed Decision-Making Framework 314
12.2 Cognitive Vehicular Networks: Related Work 315
12.3 Distributed Decision Making .. 317
 12.3.1 Evolutionary Game Theory 317
 12.3.2 Reinforcement Learning .. 319
 12.3.3 Reinforcement Learning and Evolutionary Game Theory ... 320
12.4 Adaptive WiFi/WiMAX Networking Platform 321
 12.4.1 Network Model .. 321
 12.4.2 Decision-Making Framework 322
12.5 Hierarchical Game Formulation for Distributed Decision Making Framework ... 323
 12.5.1 Gateway Selection by Client Nodes 324
 12.5.2 Price Competition Among Gateway Nodes 324
 12.5.3 Role Selection by Vehicular Nodes 326
12.6 Performance Evaluation .. 327
 12.6.1 Gateway Selection .. 327
 12.6.2 Gateway Selection and Price Competition 328
 12.6.3 Individual Net Utility of Gateway and Client 329
 12.6.4 Total Net Utility and Total End-to-End Bandwidth 330
 12.6.5 Number of Gateways Under Different Vehicle Speeds ... 331
12.7 Conclusion .. 332
References .. 332

13 Cognitive Radio Mobile Ad Hoc Networks in Healthcare 335
 Ziqian Dong, Shamik Sengupta, S. Anand, Kai Hong,
 Rajarathnam Chandramouli, and K.P. Subbalakshmi

 13.1 Introduction .. 335
 13.1.1 Technology Advancement Has Made Health Care Automation Network Possible 336
 13.1.2 Wireless Technologies for Data Transmission 336

 13.2 System Architecture .. 338

 13.3 Cognitive Radio for Health Care Automation Network:
 Research Challenges .. 340
 13.3.1 Location-Assisted Dynamic Spectrum Access 340
 13.3.2 Interference Awareness Among Health Monitoring Devices ... 341
 13.3.3 Power Aware Data Compression and Channel Coding ... 345

 13.4 Cognitive Radio Testbed for Health Care Automation Network ... 347

 13.5 Conclusion .. 349

References .. 349
Interoperability Between IEEE 802.11e and HSDPA: Challenges from Cognitive Radio

Orlando Cabral, João M. Ferro, and Fernando J. Velez

14.1 Introduction

14.2 HSDPA/Wi-Fi Interoperability

14.2.1 Interoperability Between HSDPA and Wi-Fi

14.2.2 Simulation Results

14.2.3 Lessons Learned from RAT Selection

14.3 Spectrum Aggregation Between the 2 and 5 GHz Bands in HSDPA

14.3.1 Problem Formulation

14.3.2 System Modelling

14.3.3 Resource Allocation

14.3.4 2 and 5 GHz Usage Under a CRRM Approach

14.3.5 Results

14.3.6 Summary and Conclusions

14.4 IEEE 802.11e Ad Hoc Networking

14.4.1 Empirical Approach

14.4.2 Genetic Algorithms Approach

14.4.3 Conclusions and Future Work

14.5 Challenges for Hierarchical HSDPA/Wi-Fi Scenario

14.6 Conclusions

References

An Autonomous Access Point for Cognitive Wireless Networks

Bheemarjuna Reddy Tamma, B.S. Manoj, and Ramesh Rao

15.1 Introduction

15.2 Related Work

15.3 CogAP Architecture

15.3.1 Sensing and Serving Module

15.3.2 Cognitive Controller Module

15.4 Traffic Sensing Module Design

15.4.1 Strategies for Accurate Sampling of Wireless Traffic

15.4.2 Why Not Count-Driven Count-Based Sampling for Multi-channel Wireless Traffic Sensing?

15.4.3 Evaluating the Accuracy of Sampling

15.4.4 Performance Results on the Accuracy of Traffic Sampling

15.4.5 Traffic Characterization

15.5 Cognitive Controller Module Design

15.5.1 Performance Results

15.5.2 Decision Making

15.6 CogAP Prototype Implementation

15.7 Performance Results

Part VI Game Theoretic Approach for Modeling and Optimization

16 Economic Approaches in Cognitive Radio Networks
Sabita Maharjan, Yan Zhang, and Stein Gjessing
16.1 Introduction
16.2 Game Theory
16.2.1 Cooperative and Non-cooperative Games
16.2.2 Equilibrium: Existence, Refinement and Selection
16.2.3 Different Game Models
16.2.4 Applications of Game Theory in Spectrum Sharing
16.2.5 Research Challenges in Using Game Theory
16.3 Price Theory and Market Theory
16.3.1 Price Theory
16.3.2 Market Theory
16.3.3 Applications of Price Theory and Market Theory in Spectrum Sharing
16.3.4 Research Challenges of Using Price Theory and Market Theory
16.4 Joint Strategy: Game Theory, Market Theory, and Price Theory
16.5 Classification of Related Work Based on Issues and Solutions
16.6 Open Research Problems
16.6.1 Coalition Formation and Communication Overhead
16.6.2 Distributed Algorithms for Truthful Bidding
16.6.3 Incentive-Driven Spectrum Sensing
16.6.4 Trust and Security
16.6.5 Assumption of Rationality and Complete Information
16.7 Conclusion
References

17 Game Based Self-Coexistence Schemes in Cognitive Radio Networks
Sajal K. Das, Vanessa Gardellin, and Luciano Lenzini
17.1 Challenges and Terminology
17.1.1 Cognitive Radios and Cognitive Radio Networks
17.1.2 Self-Coexistence and Channel Assignment
17.1.3 Outline of the Chapter
17.2 Self-Coexistence: From the MAC Layer up to the Network Layer
17.2.1 IEEE 802 Standards for Self-Coexistence
References
17.2.2 Network Architectures for Cognitive Radio Networks . 438
17.2.3 IEEE 802.22 Standard 439

17.3 Game Theory ... 443
17.3.1 Set of Players 443
17.3.2 Set of Strategies 446
17.3.3 Set of Utility Functions 446

17.4 Families of Games for Cognitive Radio Networks 447
17.4.1 Non-cooperative Games 447
17.4.2 Cooperative Games 452

17.5 Conclusions ... 457

References .. 458

Index .. 461
Cognitive Radio Mobile Ad Hoc Networks
Yu, F.R. (Ed.)
2011, XXIX, 476 p., Hardcover
ISBN: 978-1-4419-6171-6