Contents

Part I Dynamic Spectrum Access

1 Distributed Consensus-Based Cooperative Spectrum Sensing
in Cognitive Radio Mobile Ad Hoc Networks 3
F. Richard Yu, Helen Tang, Minyi Huang, Peter Mason, and Zhiqiang Li
1.1 Introduction ... 3
1.2 Background ... 5
 1.2.1 Introduction of Spectrum Sensing in Cognitive Radio 5
 1.2.2 Mobile Ad Hoc Networks 9
 1.2.3 Distributed Consensus-Based Cooperative Spectrum Sensing Scheme ... 10
1.3 Secondary Users Network Modeling 11
 1.3.1 Network Topology in Distributed Consensus-Based Cooperative Spectrum Sensing 11
 1.3.2 The Spectrum Sensing Model 12
 1.3.3 The Network Model and Consensus Notions 15
1.4 Distributed Consensus-Based Cooperative Spectrum Sensing
 in Fixed Graphs ... 16
 1.4.1 The Consensus Algorithm 16
 1.4.2 Performance of the Consensus Algorithm 18
1.5 Distributed Consensus-Based Cooperative Spectrum Sensing
 in Random Graphs ... 19
 1.5.1 Random Graph Modeling of the Network Topology 19
 1.5.2 The Algorithm with Random Graphs 19
1.6 Simulation Results and Discussions 22
 1.6.1 Distributed Consensus-Based Cooperative Spectrum Sensing .. 22
 1.6.2 Scenario Two .. 27
1.7 Conclusion .. 33
References .. 34
2 On the Spectrum Handoff for Cognitive Radio Ad Hoc Networks
Without Common Control Channel ... 37
Yi Song and Jiang Xie
2.1 Introduction ... 38
 2.1.1 Spectrum Handoff in Cognitive Radio Networks 38
 2.1.2 Common Control Channel in Cognitive Radio
 Networks ... 39
 2.1.3 Channel Selection in Cognitive Radio Networks 40
 2.1.4 Analytical Model for Spectrum Handoff in Cognitive
 Radio Networks .. 40
 2.1.5 Contributions .. 41
 2.1.6 Organization ... 42
2.2 Network Coordination and Assumptions 42
 2.2.1 Single Rendezvous Coordination Scheme 42
 2.2.2 Multiple Rendezvous Coordination Scheme 43
 2.2.3 Network Assumptions ... 44
2.3 Proactive Spectrum Handoff Protocol 45
 2.3.1 Proposed Spectrum Handoff Criteria and Policies 45
 2.3.2 Proposed Spectrum Handoff Protocol Details 46
2.4 Distributed Channel Selection Algorithm 49
 2.4.1 Procedure of the Proposed Channel Selection
 Algorithm .. 49
 2.4.2 Fairness and Scalability of the Proposed Channel
 Selection Scheme .. 51
2.5 Performance Evaluation of the Proposed Proactive Spectrum
 Handoff Framework .. 52
 2.5.1 Simulation Setup .. 52
 2.5.2 The Proposed Proactive Spectrum Handoff Scheme 54
 2.5.3 The Proposed Distributed Channel Selection Scheme 60
2.6 The Proposed Three Dimensional Discrete-time Markov Model.. 63
 2.6.1 The Proposed Markov Model 63
 2.6.2 Derivation of Steady-State Probabilities 64
 2.6.3 The Probability That at Least One Channel Is Idle 68
 2.6.4 Results Validation ... 69
 2.6.5 The Impact of Spectrum Sensing Delay 70
2.7 Conclusion .. 72
References .. 72

3 Environment–Mobility Interaction Mapping for Cognitive
MANETs .. 75
Irene Macaluso, Timothy K. Forde, Oliver Holland, and Keith E. Nolan
3.1 Introduction ... 75
3.2 The MANET as a Cognitive Network 76
3.3 Mobility Perturbs the MANET 79
Chapter 4: Spectrum Sharing in DS-CDMA/OFDM Wireless Mobile Networks
Keivan Navaie, Halim Yanikomeroglu, Mohammad G. Khoshkholgh, Ahmad R. Sharafat, and Hamidreza Nikoofar

4.1 Introduction .. 91
4.2 System Model ... 93
4.3 Impact of Primary Service Activity 95
4.4 Opportunistic Spectrum Sharing in DS-CDMA/OFDM Systems: Basic Definitions 100
4.5 Single Secondary Service User 103
4.5.1 Uniform Sub-channel Selection 103
4.5.2 Non-uniform Sub-channel Selection 106
4.6 Multiple Secondary Service Users 115
4.6.1 Uniform Sub-channel Selection 115
4.6.2 Non-uniform Sub-channel Selection 116
4.6.3 Impact of Intersecondary Service Interference 116
4.6.4 Multiple Sub-channel Selection 117
4.7 Numerical Studies 119
4.7.1 Comparing Sub-channel Selection Policies 119
4.7.2 Impact of Multiple Secondary Users 122
4.8 Conclusions ... 124
References .. 124

Part II Medium Access Control

Chapter 5: CREAM-MAC: Cognitive Radio-Enabled Multi-channel MAC for Wireless Networks
Xi Zhang and Hang Su

5.1 Introduction .. 129
5.2 Related Works .. 131
5.3 The System Models 132
5.3.1 Primary Users’ Behaviors 132
5.3.2 The Spectrum Sensing Model 133
5.3.3 Channel Aggregating Technique 134
5.4 The Proposed CREAM-MAC Protocol 134
5.4.1 Protocol Overview 134
5.4.2 The Maximum Allowable Transmission Duration for SUs 137
5.4.3 The Selection of Licensed Channels 137
References .. 124
Part III Topology Control and Routing

8 Topology Control and Routing in Cognitive Radio Mobile Ad Hoc Networks 209
Quansheng Guan, F. Richard Yu, and Shengming Jiang
8.1 Introduction ... 209
8.2 Topology Control and Routing 210
 8.2.1 Topology Control 210
 8.2.2 Routing .. 212
 8.2.3 Discussions 213
8.3 A Prediction-Based Cognitive Topology Control in CR-MANETs .. 214
 8.3.1 Cognitive Link Availability Prediction 215
 8.3.2 Cognitive Topology Control and Routing 216
 8.3.3 Results and Discussions 219
8.4 Conclusions .. 221
References .. 222

9 Routing Schemes for Cognitive Radio Mobile Ad Hoc Networks 227
Jun Li, Yifeng Zhou, and Louise Lamont
9.1 Introduction ... 227
9.2 CR-MANET Routing Schemes 229
 9.2.1 Classification of CR-MANET Routing Schemes 229
 9.2.2 MANET Protocol-Based CR-MANET Routing 229
 9.2.3 Model-Based CR-MANET Routing 232
9.3 ARDC: A Graph Model-Based Routing Scheme 235
 9.3.1 CR-MANET Model and Routing Design Framework .. 235
 9.3.2 Topology Formation 237
 9.3.3 Routing Scheme 241
9.4 Conclusion and Discussion 246
References .. 247

10 Delay in Cognitive Radio Networks 249
Yaling Yang, Chuan Han, and Bo Gao
10.1 Introduction ... 249
10.2 Optimal Information Propagation Speed Analysis in Multihop Cognitive Radio Networks 250
10.2.1 Network Model ... 251
10.2.2 Problem Formulation 252
10.2.3 Network IPS ... 253
10.2.4 Flow IPS .. 258
10.2.5 Simulation and Numerical Validation 263
10.3 Delay Analysis in Single-Hop Cognitive Radios Networks 271
10.3.1 System Model ... 271
10.3.2 Delay Analysis Under Channel Aggregation 275
10.3.3 Optimal Bandwidth Duration Decision 278
10.3.4 Numerical Analysis and Simulation Results 280
10.4 Summary ... 282
References .. 283

Part IV Multimedia Transmissions

11 Real-Time Multimedia Transmission over Cognitive Radio Networks .. 287
Haiyan Luo, Song Ci, Dalei Wu, Zhiyong Feng, and Hui Tang
11.1 Introduction .. 287
11.2 Design Background .. 289
11.2.1 Game Theory ... 290
11.2.2 Cross-layer Optimization 290
11.3 System Model for Video Transmission 291
11.4 Video Quality Performance Metric 292
11.5 Channel Model ... 294
11.6 MAC Scheduling Delay 296
11.7 Transmission Delay ... 297
11.8 Problem Formulation and Optimal Solution 298
11.9 Experimental Analysis .. 300
11.9.1 Experimental Environment 300
11.9.2 Performance Evaluation 301
11.10 Conclusions .. 305
References .. 305

Part V Applications of Cognitive Radio Mobile Ad Hoc Networks

12 An Adaptive WiFi/WiMAX Networking Platform for Cognitive Vehicular Networks ... 311
Dusit Niyato, Ekram Hossain, and Teerawat Issariyakul
12.1 Introduction .. 311
12.1.1 Wireless Technologies 312
12.1.2 Transmission Strategies 313
12.1.3 Medium Access Control Protocols	313
12.1.4 Distributed Decision-Making Framework	314
12.2 Cognitive Vehicular Networks: Related Work	315
12.3 Distributed Decision Making	317
12.3.1 Evolutionary Game Theory	317
12.3.2 Reinforcement Learning	319
12.3.3 Reinforcement Learning and Evolutionary Game Theory	320
12.4 Adaptive WiFi/WiMAX Networking Platform	321
12.4.1 Network Model	321
12.4.2 Decision-Making Framework	322
12.5 Hierarchical Game Formulation for Distributed Decision Making Framework	323
12.5.1 Gateway Selection by Client Nodes	324
12.5.2 Price Competition Among Gateway Nodes	324
12.5.3 Role Selection by Vehicular Nodes	326
12.6 Performance Evaluation	327
12.6.1 Gateway Selection	327
12.6.2 Gateway Selection and Price Competition	328
12.6.3 Individual Net Utility of Gateway and Client	329
12.6.4 Total Net Utility and Total End-to-End Bandwidth	330
12.6.5 Number of Gateways Under Different Vehicle Speeds	331
12.7 Conclusion	332
References	332

13 Cognitive Radio Mobile Ad Hoc Networks in Healthcare 335
Ziqian Dong, Shamik Sengupta, S. Anand, Kai Hong,
Rajarathnam Chandramouli, and K.P. Subbalakshmi

13.1 Introduction .. 335
13.1.1 Technology Advancement Has Made Health Care Automation Network Possible 336
13.1.2 Wireless Technologies for Data Transmission 336
13.2 System Architecture 338
13.3 Cognitive Radio for Health Care Automation Network:
Research Challenges ... 340
13.3.1 Location-Assisted Dynamic Spectrum Access 340
13.3.2 Interference Awareness Among Health Monitoring Devices ... 341
13.3.3 Power Aware Data Compression and Channel Coding 345
13.4 Cognitive Radio Testbed for Health Care Automation Network 347
13.5 Conclusion ... 349
References .. 349
14 Interoperability Between IEEE 802.11e and HSDPA: Challenges from Cognitive Radio ... 351
Orlando Cabral, João M. Ferro, and Fernando J. Veleiz

14.1 Introduction ... 351
14.2 HSDPA/Wi-Fi Interoperability 352
 14.2.1 Interoperability Between HSDPA and Wi-Fi 352
 14.2.2 Simulation Results 353
 14.2.3 Lessons Learned from RAT Selection 357
14.3 Spectrum Aggregation Between the 2 and 5 GHz Bands in HSDPA ... 358
 14.3.1 Problem Formulation 358
 14.3.2 System Modelling .. 359
 14.3.3 Resource Allocation 360
 14.3.4 2 and 5 GHz Usage Under a CRRM Approach 361
 14.3.5 Results .. 361
 14.3.6 Summary and Conclusions 363
14.4 IEEE 802.11e Ad Hoc Networking 363
 14.4.1 Empirical Approach 364
 14.4.2 Genetic Algorithms Approach 366
 14.4.3 Conclusions and Future Work 367
14.5 Challenges for Hierarchical HSDPA/Wi-Fi Scenario 368
14.6 Conclusions ... 369
References ... 370

15 An Autonomous Access Point for Cognitive Wireless Networks . . . 373
Bheemarjuna Reddy Tamma, B.S. Manoj, and Ramesh Rao

15.1 Introduction ... 373
15.2 Related Work ... 375
15.3 CogAP Architecture .. 376
 15.3.1 Sensing and Serving Module 376
 15.3.2 Cognitive Controller Module 377
15.4 Traffic Sensing Module Design 378
 15.4.1 Strategies for Accurate Sampling of Wireless Traffic 379
 15.4.2 Why Not Count-Driven Count-Based Sampling for Multi-channel Wireless Traffic Sensing? 381
 15.4.3 Evaluating the Accuracy of Sampling 383
 15.4.4 Performance Results on the Accuracy of Traffic Sampling ... 384
 15.4.5 Traffic Characterization 387
15.5 Cognitive Controller Module Design 390
 15.5.1 Performance Results 393
 15.5.2 Decision Making ... 395
15.6 CogAP Prototype Implementation 396
15.7 Performance Results .. 397
Part VI Game Theoretic Approach for Modeling and Optimization

16 Economic Approaches in Cognitive Radio Networks .. 403
Sabita Maharjan, Yan Zhang, and Stein Gjessing
16.1 Introduction ... 403
16.2 Game Theory .. 405
 16.2.1 Cooperative and Non-cooperative Games 406
 16.2.2 Equilibrium: Existence, Refinement and Selection ... 406
 16.2.3 Different Game Models 409
 16.2.4 Applications of Game Theory in Spectrum Sharing 412
 16.2.5 Research Challenges in Using Game Theory 415
16.3 Price Theory and Market Theory 416
 16.3.1 Price Theory 416
 16.3.2 Market Theory 417
 16.3.3 Applications of Price Theory and Market Theory
 in Spectrum Sharing 419
 16.3.4 Research Challenges of Using Price Theory
 and Market Theory 420
16.4 Joint Strategy: Game Theory, Market Theory,
 and Price Theory 420
16.5 Classification of Related Work Based on Issues and Solutions .. 424
16.6 Open Research Problems 427
 16.6.1 Coalition Formation and Communication Overhead ... 427
 16.6.2 Distributed Algorithms for Truthful Bidding 427
 16.6.3 Incentive-Driven Spectrum Sensing 428
 16.6.4 Trust and Security 428
 16.6.5 Assumption of Rationality and Complete Information 429
16.7 Conclusion ... 430
References ... 430

17 Game Based Self-Coexistence Schemes in Cognitive Radio
Networks ... 433
Sajal K. Das, Vanessa Gardellin, and Luciano Lenzini
17.1 Challenges and Terminology 433
 17.1.1 Cognitive Radios and Cognitive Radio Networks 435
 17.1.2 Self-Coexistence and Channel Assignment 435
 17.1.3 Outline of the Chapter 437
17.2 Self-Coexistence: From the MAC Layer up to the
Network Layer ... 438
 17.2.1 IEEE 802 Standards for Self-Coexistence 438
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2.2</td>
<td>Network Architectures for Cognitive Radio Networks</td>
<td>438</td>
</tr>
<tr>
<td>17.2.3</td>
<td>IEEE 802.22 Standard</td>
<td>439</td>
</tr>
<tr>
<td>17.3</td>
<td>Game Theory</td>
<td></td>
</tr>
<tr>
<td>17.3.1</td>
<td>Set of Players</td>
<td>443</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Set of Strategies</td>
<td>446</td>
</tr>
<tr>
<td>17.3.3</td>
<td>Set of Utility Functions</td>
<td>446</td>
</tr>
<tr>
<td>17.4</td>
<td>Families of Games for Cognitive Radio Networks</td>
<td>447</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Non-cooperative Games</td>
<td>447</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Cooperative Games</td>
<td>452</td>
</tr>
<tr>
<td>17.5</td>
<td>Conclusions</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>461</td>
</tr>
</tbody>
</table>
Cognitive Radio Mobile Ad Hoc Networks
Yu, F.R. (Ed.)
2011, XXIX, 476 p., Hardcover
ISBN: 978-1-4419-6171-6