

Contents

Preface vii

CHAPTER I

The Radon Transform on \mathbb{R}^n

- §1 Introduction 1
- §2 The Radon Transform of the Spaces $\mathcal{D}(\mathbb{R}^n)$ and $\mathcal{S}(\mathbb{R}^n)$. The Support Theorem 2
- §3 The Inversion Formula. Injectivity Questions 16
- §4 The Plancherel Formula 25
- §5 Radon Transform of Distributions 27
- §6 Integration over d-planes. X-ray Transforms. The Range of the d-plane Transform 32
- §7 Applications 46
 - B. X-ray Reconstruction 52
- Exercises and Further Results 56
- Bibliographical Notes 60

CHAPTER II

A Duality in Integral Geometry

- §1 Homogeneous Spaces in Duality 63
- §2 The Radon Transform for the Double Fibration 67
 - (i) Principal Problems 68
 - (ii) Ranges and Kernels. General Features 71
 - (iii) The Inversion Problem. General Remarks 72
- §3 Orbital Integrals 75
- §4 Examples of Radon Transforms for Homogeneous Spaces in Duality 77
 - A. The Funk Transform 77
 - B. The X-ray Transform in \mathbf{H}^2 80
 - C. The Horocycles in \mathbf{H}^2 82
 - D. The Poisson Integral as a Radon Transform 86
 - E. The d-plane Transform 88
 - F. Grassmann Manifolds 90
 - G. Half-lines in a Half-plane 91
 - H. Theta Series and Cusp Forms 94
 - I. The Plane-to-Line Transform in \mathbb{R}^3. The Range 95
 - J. Noncompact Symmetric Space and Its Family of Horocycles 103
- Exercises and Further Results 104
- Bibliographical Notes 108
CHAPTER III
The Radon Transform on Two-Point Homogeneous Spaces

§1 Spaces of Constant Curvature. Inversion and Support Theorems 111
 A. The Euclidean Case \mathbb{R}^n 114
 B. The Hyperbolic Space 118
 C. The Spheres and the Elliptic Spaces 133
 D. The Spherical Slice Transform 145

§2 Compact Two-Point Homogeneous Spaces. Applications 147
§3 Noncompact Two-Point Homogeneous Spaces 157
§4 Support Theorems Relative to Horocycles 159
 Exercises and Further Results 167
 Bibliographical Notes 168

CHAPTER IV
The X-Ray Transform on a Symmetric Space

§1 Compact Symmetric Spaces. Injectivity and Local Inversion. Support Theorem 171

§2 Noncompact Symmetric Spaces. Global Inversion and General Support Theorem 178

§3 Maximal Tori and Minimal Spheres in Compact Symmetric Spaces 180
 Exercises and Further Results 182
 Bibliographical Notes 183

CHAPTER V
Orbital Integrals and the Wave Operator for Isotropic Lorentz Spaces

§1 Isotropic Spaces 185
 A. The Riemannian Case 186
 B. The General Pseudo-Riemannian Case 186
 C. The Lorentzian Case 190

§2 Orbital Integrals 190

§3 Generalized Riesz Potentials 199

§4 Determination of a Function from Its Integral over Lorentzian Spheres 202

§5 Orbital Integrals and Huygens’ Principle 206
 Bibliographical Notes 208

CHAPTER VI
The Mean-Value Operator

§1 An Injectivity Result 209

§2 Ásgeirsson’s Mean-Value Theorem Generalized 211

§3 John’s Identities 215
 Exercises and Further Results 217
 Bibliographical Notes 219
CHAPTER VII
Fourier Transforms and Distributions. A Rapid Course

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§1 The Topology of Spaces (\mathcal{D}(\mathbb{R}^n)), (\mathcal{E}(\mathbb{R}^n)), and (\mathcal{S}(\mathbb{R}^n))</td>
<td>221</td>
</tr>
<tr>
<td>§2 Distributions</td>
<td>223</td>
</tr>
<tr>
<td>§3 Convolutions</td>
<td>224</td>
</tr>
<tr>
<td>§4 The Fourier Transform</td>
<td>226</td>
</tr>
<tr>
<td>§5 Differential Operators with Constant Coefficients</td>
<td>234</td>
</tr>
<tr>
<td>§6 Riesz Potentials</td>
<td>236</td>
</tr>
<tr>
<td>Exercises and Further Results</td>
<td>248</td>
</tr>
<tr>
<td>Bibliographical Notes</td>
<td>250</td>
</tr>
</tbody>
</table>

CHAPTER VIII
Lie Transformation Groups and Differential Operators

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§1 Manifolds and Lie Groups</td>
<td>253</td>
</tr>
<tr>
<td>§2 Lie Transformation Groups and Radon Transforms</td>
<td>261</td>
</tr>
</tbody>
</table>

CHAPTER IX
Symmetric Spaces

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§1 Definition and Examples</td>
<td>265</td>
</tr>
<tr>
<td>§2 Symmetric Spaces of the Noncompact Type</td>
<td>267</td>
</tr>
<tr>
<td>§3 Symmetric Spaces of the Compact Type</td>
<td>273</td>
</tr>
</tbody>
</table>

Bibliography

Notational Conventions

Frequently Used Symbols

Index
Integral Geometry and Radon Transforms
Helgason, S.
2011, XIII, 301 p., Hardcover