Contents

Part I Experimental Investigation of the Properties of Oscillating Heteromagnetic Structures at Low, Medium, and High Power Levels

1 Spectra of Regular and Noise Signals .. 3
 1.1 General Remarks: Generalized Models .. 3
 1.2 Regimes of Low and Middle Power Levels 16
 1.3 Regimes of High Power Level ... 22
 1.3.1 Control by Magnetic Field and High-Frequency Signals Power 22
 1.3.2 Multifunctional Properties of Powerful Heteromagnetic Oscillators 29
 1.4 Signal Spectra of Heteromagnetic Interactions on High Power Levels 45

2 Properties of Structures with Ferrites of Different Magnetizations 61
 2.1 General Remarks ... 61
 2.2 Structures with Ferrite KG-8 ... 62
 2.2.1 Angle of Orientation of FMCR $\varphi = 45^\circ$ 67
 2.2.2 Angle of Orientation of FMCR $\varphi = 90^\circ$ 71
 2.3 Structures with Ferrite KG-15 ... 76
 2.3.1 Angle of Orientation of FMCR $\varphi = 0^\circ$ 76
 2.3.2 Angle of Orientation of FMCR $\varphi = 45^\circ$ 83
 2.3.3 Angle of Orientation of FMCR $\varphi = 90^\circ$ 87
 2.4 Structures with Ferrite KG-50 ... 91
 2.4.1 Angle of Orientation of FMCR $\varphi = 0^\circ$ 91
 2.4.2 Angle of Orientation of FMCR $\varphi = 45^\circ$ 95
 2.4.3 Angle of Orientation of FMCR $\varphi = 90^\circ$ 99
 2.5 Structures with Ferrites KG-65 and KG-140 102
 2.5.1 Angle of Orientation of FMCR $\varphi = 90^\circ$ 102
 2.6 Generalization of Experimental Data 105

3 Control Over Energy and Spectral Characteristics

3.1 Control Over Characteristics of Spectral-Pure Signals .. 107
3.1.1 Structures with Various Orientations in a Magnetic Field ... 107
3.1.2 Structures with Ferrites of Various Magnetization ... 114

3.2 Control Over Characteristics of Pseudonoise and Noise Signals 124
3.2.1 Structures with Various Orientations in a Magnetic Field ... 124
3.2.2 Structures with Ferrites of Various Magnetization ... 131

3.3 Control Over Characteristics of Evenly Spaced Grids of Signal Frequencies 139
3.3.1 Structures with Various Orientations in a Magnetic Field ... 139
3.3.2 Structures with Ferrites of Various Magnetization ... 142

4 Generalization Control Characteristics in Generative Structures

4.1 Structure Characteristics with Various Orientations .. 149
4.1.1 Structures with KG-8 FMCR .. 149
4.1.2 Structures with KG-15 FMCR .. 150
4.1.3 Structures with KG-50 FMCR .. 153

4.2 Structure Characteristics with Various Magnetizations ... 155
4.2.1 FMCR Orientation Angle $\varphi = 0^\circ$... 157
4.2.2 FMCR Orientation Angle $\varphi = 45^\circ$.. 159
4.2.3 FMCR Orientation Angle $\varphi = 90^\circ$.. 159

4.3 Physical Mechanisms of Heteromagnetic Interactions .. 172

Part II Process Modeling in Heteromagnetic Structures

5 Heteromagnetic Oscillator

5.1 Equivalent Circuit of a High-Power Bipolar Transistor ... 175
5.2 Modeling of Static Characteristics of a Powerful Bipolar Transistor 181
5.3 Basic Model Equations .. 182
5.4 Calculation of Characteristics of Powerful Heteromagnetic Microwave Oscillators 185
5.5 Modeling of Complicated Regimes ... 191

6 Multicircuit Model of a Multifunctional Heteromagnetic Oscillator

6.1 Equivalent Circuit .. 199
6.2 Model Equations ... 202
6.3 Methods of Finalizing Equivalent Parameters of Transistor ... 205
6.4 Equivalent Circuit of a Multifunctional Heteromagnetic Oscillator 212
6.5 Oscillating Modes of Subharmonic Constituents ... 214
6.6 Oscillating Modes of Evenly Spaced Frequencies Spectra ... 223
6.7 Regimes of Pseudonoise Signals .. 226
Part III Calculation of Parameters of Heteromagnetic Structures

7 Calculation of Parameters of Transistors, Coupling Elements, Magnetotransistors in a Frequency Band Below 100 GHz

7.1 Bipolar Transistor in Omnirange, UHF Range

7.1.1 General Data on Programs

7.1.2 Test Task

7.2 FET in Omnirange, UHF Range

7.2.1 Determination of Parameters of a FET Model with Schottky Gate

7.2.2 Method for Determination of Transistor Parameters

7.2.3 Test Task

7.3 Powerful FET in EHF Range

7.3.1 Model of EHF Transistor of HEMT-1

7.3.2 Model of EHF Transistor of HEMT-2

7.4 Magneto-electronic Elements of LPL

7.4.1 Coupling Element in Omnirange, UHF Range

7.4.2 Coupling Element in Microwave Frequency, EHF Range

7.5 Powerful Bipolar Transistor in Microwave Frequency Range

7.6 Powerful Bipolar Heteromagnetic Transistor in Microwave Frequency Range

7.7 Powerful Magneto-FET in a Frequency Band Below 30 GHz

7.8 Powerful Magneto-FET in EHF Range

8 Calculation of Thermal Conditions of Magnetotransistors in Continuous and Pulse Modes

8.1 General Remarks

8.2 Nonstationary and Temperature Field of Powerful Magneto-FET in Pulse Mode

8.3 Stationary Thermal Resistance of Powerful Magneto-FET with Squared Shape

8.4 Stationary Thermal Resistance of Powerful Magneto-FET in the Form of Multilayer Cylinder

Part IV Applied Aspects

9 Influence of External Factors

9.1 General Remarks

9.2 Estimation of Static Load

9.3 Strength of Beam-Type Bonds

9.4 Strength of Glue Fixation

9.5 Strength of Screw Connection

9.6 Resistivity to Dynamic Forces

9.7 Resistivity to Pressure Changes
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8 Resistivity to Temperature Excitations</td>
<td>297</td>
</tr>
<tr>
<td>9.9 Resistivity of HMS to External Factors</td>
<td>299</td>
</tr>
<tr>
<td>9.10 Estimation of Jam Protection</td>
<td>299</td>
</tr>
<tr>
<td>10 Multifunctional Generation and Boosting</td>
<td>307</td>
</tr>
<tr>
<td>10.1 Generation of Increased Continued and Pulse Power</td>
<td>307</td>
</tr>
<tr>
<td>Levels in Omnirange, UHF Ranges</td>
<td></td>
</tr>
<tr>
<td>10.2 Signal Multiplication in Omnirange, UHF Range</td>
<td>309</td>
</tr>
<tr>
<td>10.3 Generation and Multiplication of Signals of Low and High Power</td>
<td>310</td>
</tr>
<tr>
<td>Levels in UHF and Microwave Frequency Ranges</td>
<td></td>
</tr>
<tr>
<td>10.4 Generation of Powerful Signals in the EHF Range</td>
<td>313</td>
</tr>
<tr>
<td>11 Multifunctional Frequency Synthesizers</td>
<td>317</td>
</tr>
<tr>
<td>11.1 General Data</td>
<td>317</td>
</tr>
<tr>
<td>11.2 Oscillators Operated by Magnetic Field in Frequency Synthesizers</td>
<td>322</td>
</tr>
<tr>
<td>11.3 Frequency Synthesizers of Indirect Synthesis Based on APLC</td>
<td>324</td>
</tr>
<tr>
<td>11.4 Oscillator Operated by Magnetic Field</td>
<td>326</td>
</tr>
<tr>
<td>11.4.1 Experimental MCG Research</td>
<td>329</td>
</tr>
<tr>
<td>11.5 Multifunctional Frequency Synthesizers Based on APLC Using GSM</td>
<td>331</td>
</tr>
<tr>
<td>11.6 Multifunctional Operated Frequency Synthesizer Based on Transistor</td>
<td>332</td>
</tr>
<tr>
<td>BFR 90</td>
<td></td>
</tr>
<tr>
<td>11.7 Transient Processes Inside Synthesizers with APLC</td>
<td>335</td>
</tr>
<tr>
<td>11.8 Output Characteristics of GSM</td>
<td>336</td>
</tr>
<tr>
<td>11.9 Pseudorandom Working Frequency Tuning and Phase-Shift Keying of</td>
<td>344</td>
</tr>
<tr>
<td>Pseudonoise Signal Using GSM</td>
<td></td>
</tr>
<tr>
<td>11.9.1 GSM with PWFT Function</td>
<td>344</td>
</tr>
<tr>
<td>11.9.2 GSM with PSK PS Function</td>
<td>346</td>
</tr>
<tr>
<td>11.10 Discrete Phaser for PSK PS</td>
<td>347</td>
</tr>
<tr>
<td>11.11 Frequency Synthesizers on Generative Magnetotransistors</td>
<td>357</td>
</tr>
<tr>
<td>12 Vector Sensors and Magnetometers with Heteromagnetic Interaction</td>
<td>359</td>
</tr>
<tr>
<td>12.1 Investigations of Properties of Double-Coil Coupling Elements</td>
<td>359</td>
</tr>
<tr>
<td>12.2 Magnetsensitive Active Oscillator</td>
<td>362</td>
</tr>
<tr>
<td>12.3 Projection Element of Magnetsensitive Sensor</td>
<td>367</td>
</tr>
<tr>
<td>12.4 Magnetsensitive One-Coordinate Sensor</td>
<td>372</td>
</tr>
<tr>
<td>12.5 Measurement Procedures of Ferrite Microresonator Parameters</td>
<td>378</td>
</tr>
<tr>
<td>12.5.1 Determination of Equilibrium Orientation of Magnetization for</td>
<td>378</td>
</tr>
<tr>
<td>Cubic Ferrite Monocrystals</td>
<td></td>
</tr>
<tr>
<td>12.5.2 Determination of Equilibrium Orientation of Magnetization of</td>
<td>380</td>
</tr>
<tr>
<td>Spheric Specimen</td>
<td></td>
</tr>
</tbody>
</table>
12.6 Experimental Investigation of Parameters of a Vector Magneto-electronic Sensor .. 384
12.7 Determination of Earth’s Magnetic Field Vector by a Heteromagnetic Sensor .. 392

13 Low-Noise Amplifiers on Magnetotransistors Below 40 GHz 403
13.1 Power Level and Dynamic Range. Choice of a Linear Transistor Model for Calculation ... 403
13.2 Choice and Substantiation of Coupling Element for a Frequency Band Below 40GHz .. 405
13.3 Projection of Magneto-electronic One-Stage Amplifier on Magnetotransistor ... 408

14 Magnetotransistors and Their Technologies .. 419
14.1 Magneto-FET of High Power Level in Intense and Generator Modes ... 419
14.2 Bipolar Magnetotransistors in Intense Mode on High Power Level in UHF Range .. 423
14.3 Experimental Investigation of Bipolar Magnetotransistors Based on KT9175A Crystals ... 430
14.4 Magneto-FET in EHF Range in Boost Regime 432
14.5 FET and Bipolar Magnetotransistor in Microwave Frequency Range of High Power Level 439
 14.5.1 Magneto-FET of High Power Level 439
 14.5.2 Bipolar Magnetotransistors of High Power Level 440
14.6 Ferrite Semiconductor Structures in Regime of Oscillation Conversion in a Frequency Band 100–1,000 GHz 444
14.7 Manufacturing Methods ... 449
 14.7.1 FET Parameters .. 449
 14.7.2 Technological Peculiarities of Manufacturing of GaAs FET ... 451
14.8 Manufacturing Methods of an Integral Magnetosemiconductor Device ... 455
14.9 Multivariate Vector Sensors of Mechanical Dynamic Quantities ... 460
15 Nonlinear Effects in Magnetotransistors and Their Elements

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Peculiarities of Nonlinear Processes in Ferromagnetics</td>
<td>475</td>
</tr>
<tr>
<td>15.2 Peculiarities of Ferromagnetic Resonance in Structures with First-order Nonlinearity</td>
<td>476</td>
</tr>
<tr>
<td>15.3 Experimental Observations of Nonlinear Ferromagnetic Resonance</td>
<td>477</td>
</tr>
<tr>
<td>15.4 Generation of Signals in Regime of Nonlinear Ferromagnetic Resonance</td>
<td>480</td>
</tr>
<tr>
<td>15.5 Saturation Mode of Principal Resonance</td>
<td>482</td>
</tr>
<tr>
<td>15.6 Power Limiting in FMCR</td>
<td>483</td>
</tr>
</tbody>
</table>

Conclusion 489

References 491

Index 495
Heteromagnetic Microelectronics
Microsystems of Active Type
Ignatiev, A.A.; Lyashenko, A.V.
2010, XXIV, 506 p., Hardcover
ISBN: 978-1-4419-6001-6