Contents

1 Introduction to Design Science Research ... 1
 1.1 What Is Design? – Different Perspectives 1
 1.2 What Is Research? ... 2
 1.3 Is Design a Science? .. 3
 1.4 What Is Design Science Research? ... 5
 1.5 Placing DSR in Context .. 5
 1.6 The Spectrum of IS DSR .. 6
 1.7 Difference Between Routine Design Practice and DSR 7
 1.8 Conclusions .. 8
References ... 8

2 Design Science Research in Information Systems 9
 2.1 Information Systems Research .. 9
 2.2 Summary of Hevner, March, Park, and Ram 2004 MISQ Paper 10
 2.3 Impacts of 2004 MISQ Paper on Design Science Research 13
 2.4 Extending the Reach of Design Science Research in IS 14
 2.4.1 Design Science Research vs. Professional Design 15
 2.4.2 Design as Research vs. Researching Design 15
 2.4.3 Design Science Research Cycles .. 16
 2.4.4 A Checklist for Design Science Research 19
 2.4.5 Publication of Design Science Research 19
References ... 21

3 Design Science Research Frameworks ... 23
 3.1 Understanding the Natural and Artificial Worlds 23
 3.2 Toward a Theory of Complex Systems .. 24
 3.3 Systems Development in Information Systems Research 25
 3.4 The General Design Cycle ... 26
 3.5 Action Research Framework ... 27
 3.6 The Design Science Research Methodology (DSRM) 28
 3.7 Concluding Thoughts ... 31
References ... 31
4 On Design Theory
4.1 What Is Theory? 33
4.2 Cycle of Theory Building 34
 4.2.1 Observation 34
 4.2.2 Classification 35
 4.2.3 Defining Relationships 35
 4.2.4 Anomaly – Improving Descriptive Theory 36
4.3 Transition to Normative Theory 36
4.4 Taxonomy of Theory Types in Information Systems .. 37
4.5 Is Design Theory Possible? 38
 4.5.1 Information Systems Design Theory 39
 4.5.2 Hooker’s View on Design Theory 40
 4.5.3 Toward the Anatomy of an IS Design Theory 41
4.6 Conclusions 42
References 42

5 Twelve Theses on Design Science Research in Information Systems
5.1 Introduction 43
5.2 Thesis 1: IS Is an Applied or Practical Discipline .. 44
5.3 Thesis 2: Prescriptive Research Is an Essential Part of IS as an Applied or Practical Discipline 45
5.4 Thesis 3: The Design Science Activity of Building IT Artifacts Is an Important Part of Prescriptive Research in Information Systems 47
5.5 Thesis 4: The Primary Interest of IS Lies in IT Applications, and Therefore IS as a Design Science Should Be Based on a Sound Ontology of IT Artifacts and Especially of IT Applications 48
5.6 Thesis 5: IS as a Design Science Builds IT Meta-artifacts That Support the Development of Concrete IT Applications 49
5.7 Thesis 6: Prescriptive Knowledge of IT Artifacts Forms a Knowledge Area of Its Own and Cannot Be Reduced to the Descriptive Knowledge of Theories and Empirical Regularities 50
5.8 Thesis 7: The Resulting IT Meta-artifacts Essentially Entail Design Product and Design Process Knowledge 51
5.9 Thesis 8: The Term “Design Theory” Should Be Used Only When It Is Based on a Sound Kernel Theory 52
5.11 Thesis 10: Explication of the Practical Problems to Be Solved, the Existing Artifacts to Be Improved, the Analogies and Metaphors to Be Used, and/or the Kernel Theories to Be Applied Is Significant in Making the Building Process Disciplined, Rigorous, and Transparent 55

5.12 Thesis 11: IS as a Design Science Cannot Be Value-Free, but It May Reflect Means-End, Interpretive, or Critical Orientation 57

5.13 Thesis 12: The Values of Design Science Research Should Be Made as Explicit as Possible 58

5.14 Conclusions and Final Comments 58

References 60

6 A Science of Design for Software-Intensive Systems 63

6.1 Science of Design Challenges 63

6.2 Software-Intensive Systems 65

6.3 Science of Design Principles 66

6.4 Categories of Software-Intensive Systems Principles 68

6.5 A Proposed Research Vision 69

6.6 SIS Scientific Theories 70

6.6.1 Software Design Theories 70

6.6.2 Dynamic System Theories 71

6.6.3 Socio-economic Theories 72

6.6.4 Domain Theories 72

6.7 SIS Engineering Activities 72

6.8 SIS Research Project Framework 74

6.9 Intellectual Drivers for Science of Design in SIS Research 75

References 76

7 People and Design 79

7.1 Designing for Consumers 80

7.2 Practice of Ethnography in Design 81

7.3 Reflection in Action (Schon’s View) 83

7.4 Designing for Scale – Google and People 83

References 86

8 Software Design: Past and Present 87

8.1 A Software Design Framework 87

8.2 Software Architecture 88

8.2.1 Manual Business Processes 89

8.2.2 Mainframe Architectures 89

8.2.3 Online, Real-Time Architectures 89

8.2.4 Distributed, Client–Server Architectures 90

8.2.5 Component-Based Architectures 91

8.2.6 Service-Oriented Architectures 92

8.3 Algorithmic Design 92
8.3.1 Early Program Design .. 93
8.3.2 Structured Program Design 93
8.3.3 Recent Algorithm Design Paradigms 94
8.3.4 Widely Used Programming Languages 94
8.4 Data Design .. 95
8.4.1 Punched Card Data Management 95
8.4.2 Computerized File Management 95
8.4.3 Online Data Processing ... 96
8.4.4 Relational Databases ... 97
8.4.5 Current Trends in Data Management 97
8.5 Human–Computer Interaction (HCI) Design 98
8.5.1 Early Computer Interactions 98
8.5.2 Text-Based Command Interfaces 98
8.5.3 The WIMP Interface ... 99
8.5.4 Current Trends in HCI ... 99
8.6 Software Development Processes and Methods 100
8.6.1 Software Development Processes 101
8.6.2 Early Development Methods 102
8.6.3 Object-Oriented Methods ... 102
8.6.4 Formal Development Methods 103
8.6.5 Component-Based Development (CBD) Methods 103
8.6.6 Agile Development Methods 104
8.6.7 Controlled-Flexible Development Methods 104
9 Evaluation .. 109
9.2 Why Do We Perform Evaluations? 110
9.3 Differing Perspectives of Stakeholders 111
9.4 Basic Structure of Evaluation Studies 112
9.5 The Art of Performance Evaluation 113
9.6 Avoiding Common Mistakes in Performance Evaluation 115
9.7 Conducting an Objectivist Comparative Study – A Brief Example ... 115
9.8 Threats to Inference and Validity 118
9.9 Conclusions ... 119
10 The Use of Focus Groups in Design Science Research 121
10.1 Introduction .. 121
10.2 Research Focus Groups .. 122
10.3 Adapting Focus Groups to Design Research 124
10.3.1 Formulate Research Question or Problem 124
10.3.2 Identify Sample Frame .. 126
10.3.3 Number of Focus Groups 126
10.3.4 Number of Participants ... 127
References ... 105
References .. 119
References .. 119
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.5 Participant Recruitment</td>
<td>127</td>
</tr>
<tr>
<td>10.3.6 Identify Moderator</td>
<td>128</td>
</tr>
<tr>
<td>10.3.7 Develop and Pre-test a Questioning Route</td>
<td>128</td>
</tr>
<tr>
<td>10.3.8 Conduct the Focus Group</td>
<td>129</td>
</tr>
<tr>
<td>10.3.9 Analyze and Interpret Data</td>
<td>129</td>
</tr>
<tr>
<td>10.3.10 Report Results</td>
<td>130</td>
</tr>
<tr>
<td>10.4 A Design Research Example</td>
<td>130</td>
</tr>
<tr>
<td>10.4.1 Research Context</td>
<td>131</td>
</tr>
<tr>
<td>10.4.2 Data Quality Metrics Description</td>
<td>131</td>
</tr>
<tr>
<td>10.4.3 Design Research Questions</td>
<td>133</td>
</tr>
<tr>
<td>10.4.4 Identify Sample Frame</td>
<td>133</td>
</tr>
<tr>
<td>10.4.5 Identify Moderator</td>
<td>134</td>
</tr>
<tr>
<td>10.4.6 Develop a Questioning Route</td>
<td>134</td>
</tr>
<tr>
<td>10.4.7 Recruit Participants</td>
<td>134</td>
</tr>
<tr>
<td>10.4.8 Conduct Focus Groups</td>
<td>135</td>
</tr>
<tr>
<td>10.4.9 Analyze and Interpret the Data</td>
<td>137</td>
</tr>
<tr>
<td>10.4.10 Report Results</td>
<td>138</td>
</tr>
<tr>
<td>10.5 Limitations on the Use of Focus Groups for Design Research</td>
<td>139</td>
</tr>
<tr>
<td>10.6 Closing Remarks</td>
<td>140</td>
</tr>
<tr>
<td>References</td>
<td>141</td>
</tr>
<tr>
<td>11 Design and Creativity</td>
<td>145</td>
</tr>
<tr>
<td>11.1 Creativity – What Is It?</td>
<td>145</td>
</tr>
<tr>
<td>11.2 Group Creativity</td>
<td>147</td>
</tr>
<tr>
<td>11.3 Conceptual Blockbusting Theory</td>
<td>148</td>
</tr>
<tr>
<td>11.4 Experiential Learning</td>
<td>150</td>
</tr>
<tr>
<td>11.5 Creativity, Design, and IT</td>
<td>150</td>
</tr>
<tr>
<td>11.6 Creativity and Design in the Age of Virtual Worlds</td>
<td>152</td>
</tr>
<tr>
<td>11.7 Designing Virtual Worlds</td>
<td>153</td>
</tr>
<tr>
<td>11.8 Conclusion</td>
<td>154</td>
</tr>
<tr>
<td>References</td>
<td>155</td>
</tr>
<tr>
<td>12 A Design Language for Knowledge Management Systems (KMS)</td>
<td>157</td>
</tr>
<tr>
<td>12.1 Problem Statement</td>
<td>157</td>
</tr>
<tr>
<td>12.2 Concept</td>
<td>159</td>
</tr>
<tr>
<td>12.3 Artifact Construction</td>
<td>162</td>
</tr>
<tr>
<td>12.4 Knowledge Packet Generator</td>
<td>162</td>
</tr>
<tr>
<td>12.5 Barriers</td>
<td>164</td>
</tr>
<tr>
<td>12.6 Value Accelerators</td>
<td>165</td>
</tr>
<tr>
<td>12.7 Receiver of Good Packets</td>
<td>167</td>
</tr>
<tr>
<td>12.8 Evaluation Methodology: SME Model Instantiation Comparison</td>
<td>167</td>
</tr>
<tr>
<td>12.9 Results</td>
<td>169</td>
</tr>
<tr>
<td>12.10 Contribution to Research</td>
<td>174</td>
</tr>
<tr>
<td>12.11 Conclusion</td>
<td>175</td>
</tr>
<tr>
<td>References</td>
<td>176</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>13</td>
<td>On Integrating Action Research and Design Research</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>13.2</td>
<td>The Research Approaches</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Design Research</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Action Research</td>
</tr>
<tr>
<td>13.3</td>
<td>Cross-Application of Criteria</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Applying Action Research Criteria to a Design Research Exemplar</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Applying Design Research Criteria to an Action Research Exemplar</td>
</tr>
<tr>
<td>13.4</td>
<td>A Way Forward</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Adding “Reflection” to Augment Learning from Design Research</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Concretizing Learning from Action Research by Adding “Build”</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Envisioning an Integrated Research Process</td>
</tr>
<tr>
<td>13.5</td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>14</td>
<td>Design Science in the Management Disciplines</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>14.2</td>
<td>Design Concepts</td>
</tr>
<tr>
<td>14.3</td>
<td>Design Science Research in Organizational Studies</td>
</tr>
<tr>
<td>14.4</td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>15.2</td>
<td>Why an Alternative Information Systems Design Science Research Approach?</td>
</tr>
<tr>
<td>15.3</td>
<td>Critical Realism</td>
</tr>
<tr>
<td>15.4</td>
<td>A Critical Realist Approach for IS Design Science Research</td>
</tr>
<tr>
<td>15.4.1</td>
<td>For Whom Should IS Design Science Research Produce Knowledge?</td>
</tr>
<tr>
<td>15.4.2</td>
<td>What Types of IS Design Knowledge Should IS Design Research Produce?</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Developing IS Design Knowledge</td>
</tr>
<tr>
<td>15.4.4</td>
<td>Examples of How to Develop IS Design Theories and Design Knowledge</td>
</tr>
<tr>
<td>15.4.5</td>
<td>Design Theory #1: Developing a Design Theory for Turning KMS Use into Profit</td>
</tr>
<tr>
<td>15.4.6</td>
<td>Design Theory #2: Developing a Design Theory for Successful Use of e-Learning</td>
</tr>
</tbody>
</table>
15.4.7 Design Theory #3: Developing a Design Theory on How to Improve the Capability of IS Integration in M&As

- Page 227

15.5 Conclusion

- Page 229

References

- Page 229

16 Design of Emerging Digital Services: A Taxonomy

- Page 235

16.1 Introduction

- Page 235

16.2 Service Versus Digital Service

- Page 237

16.3 Research Objectives

- Page 238

16.4 Why Taxonomy?

- Page 240

16.5 Grounding of the Taxonomy

- Page 240

16.6 Fundamental Design Dimensions

- Page 241
 - 16.6.1 Service Delivery
 - Page 242
 - 16.6.2 Service Maturity
 - Page 243
 - 16.6.3 Malleability
 - Page 244
 - 16.6.4 Pricing and Funding
 - Page 245

16.7 Fundamental Service Provider Objectives

- Page 247
 - 16.7.1 Business Objective
 - Page 247
 - 16.7.2 Technological Objectives
 - Page 248
 - 16.7.3 Interaction Objectives
 - Page 248

16.8 Summary of the Taxonomy

- Page 249

16.9 Evaluation of the Taxonomy

- Page 250
 - 16.9.1 Salesforce.com
 - Page 250
 - 16.9.2 Myspace.com
 - Page 251
 - 16.9.3 Itunes.com
 - Page 251

16.10 Future Research Considerations

- Page 251

References

- Page 252

17 Disseminating Design Science Research

- Page 255

17.1 Academic Route – Conference and Journal Papers

- Page 255

17.2 Funding to Support Your Design Research

- Page 257

17.3 Commercializing Your Ideas via Start-Ups

- Page 258

References

- Page 259

18 Design Science Research: Looking to the Future

- Page 261

18.1 Introduction

- Page 261

18.2 Trend 1: Growing Number of IS Scholars Will Use Design as a Research Method

- Page 262

18.3 Trend 2: Growing Number of Scholars Will Research Design

- Page 262

18.4 Trend 3: A Small but Steady Number of Scholars Will Study Design Theory

- Page 263

18.5 Trend 4: An Uptake Is Expected in These Three IT Application Area Thereby Creating a Surge in the Need for Design Researchers

- Page 263

18.5.1 Health Care and IT

- Page 263
18.5.2 Green Technology and Green IT 264
18.5.3 Green Computing 266
18.5.4 Collaboration, Web 2.0, and Social Technologies 267

References .. 267

Appendix A: Hevner, March, Park, and Ram 2004 MISQ Reprint 269

Appendix B: Exemplar Publications of Design Science Research in Information Systems .. 301

Contributors .. 305

Index .. 309
Design Research in Information Systems
Theory and Practice
Hevner, A.; Chatterjee, S.
2010, XXVIII, 320 p., Hardcover
ISBN: 978-1-4419-5652-1