Contents

1 Embedded Systems Design: Hardware and Software Interaction 1
 1.1 Introduction 1
 1.2 From Simple Compiler to Software Design for MPSoC 7
 1.3 MPSoC Programming Steps 13
 1.4 Hardware/Software Abstraction Levels 16
 1.4.1 The Concept of Hardware/Software Interface 18
 1.4.2 Software Execution Models with Abstract Hardware/Software Interfaces 20
 1.5 The Concept of Mixed Architecture/Application Model 24
 1.5.1 Definition of the Mixed Architecture/Application Model 24
 1.5.2 Execution Model for Mixed Architecture/Application Model 25
 1.6 Examples of Heterogeneous MPSoC Architectures 31
 1.6.1 1AX with AMBA Bus 31
 1.6.2 Diopsis RDT with AMBA Bus 33
 1.6.3 Diopsis R2DT with NoC 36
 1.7 Examples of Multimedia Applications 39
 1.7.1 Token Ring Functional Specification 40
 1.7.2 Motion JPEG Decoder Functional Specification 41
 1.7.3 H.264 Encoder Functional Specification 43
 1.8 Conclusions 47

2 Basics 49
 2.1 The MPSoC Architecture 49
 2.2 Programming Models for MPSoC 51
 2.2.1 Programming Models Used in Software 54
 2.2.2 Programming Models for SoC Design 55
 2.2.3 Defining a Programming Model for SoC 56
 2.2.4 Existing Programming Models 58
 2.3 Software Stack for MPSoC 65
 2.3.1 Definition of the Software Stack 65
2.3.2 Software Stack Organization... 66
2.4 Hardware Components.. 69
 2.4.1 Computing Unit... 69
 2.4.2 Memory... 77
 2.4.3 Interconnect.. 80
2.5 Software Layers.. 84
 2.5.1 Hardware Abstraction Layer.. 86
 2.5.2 Operating System... 87
 2.5.3 Communication and Middleware.................................... 92
 2.5.4 Legacy Software and Programming Models....................... 92
2.6 Conclusions... 92

3 System Architecture Design.. 93
 3.1 Introduction... 93
 3.1.1 Mapping Application on Architecture.......................... 93
 3.1.2 Definition of the System Architecture......................... 97
 3.1.3 Global Organization of the System Architecture............... 98
 3.2 Basic Components of the System Architecture Model............. 101
 3.2.1 Functions.. 101
 3.2.2 Communication... 102
 3.3 Modeling System Architecture in Simulink........................ 102
 3.3.1 Writing Style, Design Rules, and Constraints
 in Simulink... 102
 3.3.2 Software at System Architecture Level......................... 104
 3.3.3 Hardware at System Architecture Level........................ 105
 3.3.4 Hardware–Software Interface at System
 Architecture Level... 106
 3.4 Execution Model of the System Architecture....................... 106
 3.5 Design Space Exploration of System Architecture............... 106
 3.5.1 Goal of Performance Evaluation................................ 106
 3.5.2 Architecture/Application Parameters.......................... 107
 3.5.3 Performance Measurements....................................... 109
 3.5.4 Design Space Exploration.. 110
 3.6 Application Examples at the System Architecture Level........ 111
 3.6.1 Motion JPEG Application on Diopsis RDT...................... 111
 3.6.2 H.264 Application on Diopsis R2DT............................ 114
 3.7 State of the Art and Research Perspectives......................... 118
 3.7.1 State of the Art.. 118
 3.7.2 Research Perspectives.. 119
 3.8 Conclusions... 120

4 Virtual Architecture Design.. 123
 4.1 Introduction... 123
 4.1.1 Definition of the Virtual Architecture......................... 123
 4.1.2 Global Organization of the Virtual Architecture............. 124
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Basic Components of the Virtual Architecture Model</td>
<td>125</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Software Components</td>
<td>126</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Hardware Components</td>
<td>126</td>
</tr>
<tr>
<td>4.3</td>
<td>Modeling Virtual Architecture in SystemC</td>
<td>127</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Software at Virtual Architecture Level</td>
<td>127</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Hardware at Virtual Architecture Level</td>
<td>130</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Hardware–Software Interface at Virtual Architecture Level</td>
<td>134</td>
</tr>
<tr>
<td>4.4</td>
<td>Execution Model of the Virtual Architecture</td>
<td>134</td>
</tr>
<tr>
<td>4.5</td>
<td>Design Space Exploration of Virtual Architecture</td>
<td>136</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Goal of Performance Evaluation</td>
<td>136</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Architecture/Application Parameters</td>
<td>136</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Performance Measurements</td>
<td>137</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Design Space Exploration</td>
<td>139</td>
</tr>
<tr>
<td>4.6</td>
<td>Application Examples at the Virtual Architecture Level</td>
<td>139</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Motion JPEG Application on Diopsis RDT</td>
<td>139</td>
</tr>
<tr>
<td>4.6.2</td>
<td>H.264 Application on Diopsis R2DT</td>
<td>143</td>
</tr>
<tr>
<td>4.7</td>
<td>State of the Art and Research Perspectives</td>
<td>147</td>
</tr>
<tr>
<td>4.7.1</td>
<td>State of the Art</td>
<td>147</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Research Perspectives</td>
<td>148</td>
</tr>
<tr>
<td>4.8</td>
<td>Conclusions</td>
<td>149</td>
</tr>
<tr>
<td>5</td>
<td>Transaction-Accurate Architecture Design</td>
<td>151</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>151</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Definition of the Transaction-Accurate Architecture</td>
<td>152</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Global Organization of the Transaction-Accurate Architecture</td>
<td>152</td>
</tr>
<tr>
<td>5.2</td>
<td>Basic Components of the Transaction-Accurate Architecture Model</td>
<td>154</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Software Components</td>
<td>155</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Hardware Components</td>
<td>155</td>
</tr>
<tr>
<td>5.3</td>
<td>Modeling Transaction-Accurate Architecture in SystemC</td>
<td>156</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Software at Transaction-Accurate Architecture Level</td>
<td>156</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Hardware at Transaction-Accurate Architecture Level</td>
<td>161</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Hardware–Software Interface at Transaction-Accurate Architecture Level</td>
<td>164</td>
</tr>
<tr>
<td>5.4</td>
<td>Execution Model of the Transaction-Accurate Architecture</td>
<td>164</td>
</tr>
<tr>
<td>5.5</td>
<td>Design Space Exploration of Transaction-Accurate Architecture</td>
<td>166</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Goal of Performance Evaluation</td>
<td>166</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Architecture/Application Parameters</td>
<td>167</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Performance Measurements</td>
<td>167</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Design Space Exploration</td>
<td>168</td>
</tr>
</tbody>
</table>
5.6 Application Examples at the Transaction-Accurate Architecture Level
- 5.6.1 Motion JPEG Application on Diopsis RDT
- 5.6.2 H.264 Application on Diopsis R2DT

5.7 State of the Art and Research Perspectives
- 5.7.1 State of the Art
- 5.7.2 Research Perspectives

5.8 Conclusions

6 Virtual Prototype Design
- 6.1 Introduction
 - 6.1.1 Definition of the Virtual Prototype
 - 6.1.2 Global Organization of the Virtual Prototype
- 6.2 Basic Components of the Virtual Prototype Model
 - 6.2.1 Software Components
 - 6.2.2 Hardware Components
- 6.3 Modeling Virtual Prototype in SystemC
 - 6.3.1 Software at Virtual Prototype Level
 - 6.3.2 Hardware at Virtual Prototype Level
 - 6.3.3 Hardware–Software Interface at Virtual Prototype Level
- 6.4 Execution Model of the Virtual Prototype
- 6.5 Design Space Exploration of Virtual Prototype
 - 6.5.1 Goal of Performance Evaluation
 - 6.5.2 Architecture/Application Parameters
 - 6.5.3 Performance Measurements
 - 6.5.4 Design Space Exploration
- 6.6 Application Examples at the Virtual Prototype Level
 - 6.6.1 Motion JPEG Application on Diopsis RDT
 - 6.6.2 H.264 Application on Diopsis R2DT
- 6.7 State of the Art and Research Perspectives
 - 6.7.1 State of the Art
 - 6.7.2 Research Perspectives
- 6.8 Conclusions

7 Conclusions and Future Perspectives
- 7.1 Conclusions
- 7.2 Future Perspectives
Embedded Software Design and Programming of
Multiprocessor System-on-Chip
Simulink and System C Case Studies
Popovici, K.; Rousseau, F.; Jerraya, A.A.; Wolf, M.
2010, XV, 290 p. 134 illus., Hardcover
ISBN: 978-1-4419-5566-1