Contents

Foreword ... vii
Preface ... xi
Acknowledgments .. xvii
List of Figures ... xxvii
List of Tables .. xxxi

Part I Algorithmic Issues

1 Introduction .. 3
 1.1 What Is Data Mining and Knowledge Discovery? 3
 1.2 Some Potential Application Areas for Data Mining and
 Knowledge Discovery ... 4
 1.2.1 Applications in Engineering 5
 1.2.2 Applications in Medical Sciences 5
 1.2.3 Applications in the Basic Sciences 6
 1.2.4 Applications in Business 6
 1.2.5 Applications in the Political and Social Sciences 7
 1.3 The Data Mining and Knowledge Discovery Process 7
 1.3.1 Problem Definition .. 7
 1.3.2 Collecting the Data 9
 1.3.3 Data Preprocessing 10
 1.3.4 Application of the Main Data Mining and Knowledge
 Discovery Algorithms 11
 1.3.5 Interpretation of the Results of the Data Mining and
 Knowledge Discovery Process 12
Contents

1.4 Four Key Research Challenges in Data Mining and Knowledge Discovery 12
 1.4.1 Collecting Observations about the Behavior of the System 13
 1.4.2 Identifying Patterns from Collections of Data 14
 1.4.3 Which Data to Consider for Evaluation Next? 17
 1.4.4 Do Patterns Always Exist in Data? 19

1.5 Concluding Remarks 20

2 Inferring a Boolean Function from Positive and Negative Examples 21
 2.1 An Introduction .. 21
 2.2 Some Background Information 22
 2.3 Data Binarization 26
 2.4 Definitions and Terminology 29
 2.5 Generating Clauses from Negative Examples Only 32
 2.6 Clause Inference as a Satisfiability Problem 33
 2.7 An SAT Approach for Inferring CNF Clauses 34
 2.8 The One Clause At a Time (OCAT) Concept 35
 2.9 A Branch-and-Bound Approach for Inferring a Single Clause ... 38
 2.10 A Heuristic for Problem Preprocessing 45
 2.11 Some Computational Results 47
 2.12 Concluding Remarks 50

Appendix ... 52

3 A Revised Branch-and-Bound Approach for Inferring a Boolean Function from Examples 57
 3.1 Some Background Information 57
 3.2 The Revised Branch-and-Bound Algorithm 57
 3.2.1 Generating a Single CNF Clause 58
 3.2.2 Generating a Single DNF Clause 62
 3.2.3 Some Computational Results 64
 3.3 Concluding Remarks 69

4 Some Fast Heuristics for Inferring a Boolean Function from Examples 73
 4.1 Some Background Information 73
 4.2 A Fast Heuristic for Inferring a Boolean Function from Complete Data 75
 4.3 A Fast Heuristic for Inferring a Boolean Function from Incomplete Data 80
 4.4 Some Computational Results 84
 4.4.1 Results for the RA1 Algorithm on the Wisconsin Cancer Data .. 86
 4.4.2 Results for the RA2 Heuristic on the Wisconsin Cancer Data with Some Missing Values 91
 4.4.3 Comparison of the RA1 Algorithm and the B&B Method Using Large Random Data Sets 92
 4.5 Concluding Remarks 98
5 An Approach to Guided Learning of Boolean Functions 101
5.1 Some Background Information 101
5.2 Problem Description ... 104
5.3 The Proposed Approach .. 105
5.4 On the Number of Candidate Solutions 110
5.5 An Illustrative Example 111
5.6 Some Computational Results 113
5.7 Concluding Remarks .. 122

6 An Incremental Learning Algorithm for Inferring Boolean Functions 125
6.1 Some Background Information 125
6.2 Problem Description ... 126
6.3 Some Related Developments 127
6.4 The Proposed Incremental Algorithm 130
 6.4.1 Repairing a Boolean Function that Incorrectly Rejects a 131
 Positive Example
 6.4.2 Repairing of a Boolean Function that Incorrectly Accepts 133
 a Negative Example
 6.4.3 Computational Complexity of the Algorithms for the 134
 ILE Approach
6.5 Experimental Data ... 134
6.6 Analysis of the Computational Results 135
 6.6.1 Results on the Classification Accuracy 136
 6.6.2 Results on the Number of Clauses 139
 6.6.3 Results on the CPU Times 141
6.7 Concluding Remarks .. 144

7 A Duality Relationship Between Boolean Functions in CNF and 147
 DNF Derivable from the Same Training Examples 147
7.1 Introduction ... 147
7.2 Generating Boolean Functions in CNF and DNF Form 147
7.3 An Illustrative Example of Deriving Boolean Functions in CNF 148
 and DNF ..
7.4 Some Computational Results 149
7.5 Concluding Remarks .. 150

8 The Rejectability Graph of Two Sets of Examples 151
8.1 Introduction ... 151
8.2 The Definition of the Rejectability Graph 152
 8.2.1 Properties of the Rejectability Graph 153
 8.2.2 On the Minimum Clique Cover of the Rejectability Graph 155
8.3 Problem Decomposition 156
 8.3.1 Connected Components 156
 8.3.2 Clique Cover ... 157
8.4 An Example of Using the Rejectability Graph 158
Part II Application Issues

9 The Reliability Issue in Data Mining: The Case of Computer-Aided Breast Cancer Diagnosis .. 173
9.1 Introduction ... 173
9.2 Some Background Information on Computer-Aided Breast Cancer Diagnosis .. 173
9.3 Reliability Criteria .. 175
9.4 The Representation/Narrow Vicinity Hypothesis 178
9.5 Some Computational Results 181
9.6 Concluding Remarks 183
Appendix I: Definitions of the Key Attributes 185
Appendix II: Technical Procedures 187
9.A.1 The Interactive Approach 187
9.A.2 The Hierarchical Approach 188
9.A.3 The Monotonicity Property 188
9.A.4 Logical Discriminant Functions 189

10 Data Mining and Knowledge Discovery by Means of Monotone Boolean Functions .. 191
10.1 Introduction ... 191
10.2 Background Information 193
10.2.1 Problem Descriptions 193
10.2.2 Hierarchical Decomposition of Attributes 196
10.2.3 Some Key Properties of Monotone Boolean Functions .. 197
10.2.4 Existing Approaches to Problem 1 201
10.2.5 An Existing Approach to Problem 2 203
10.2.6 Existing Approaches to Problem 3 204
10.2.7 Stochastic Models for Problem 3 204
10.3 Inference Objectives and Methodology 206
10.3.1 The Inference Objective for Problem 1 206
10.3.2 The Inference Objective for Problem 2 207
10.3.3 The Inference Objective for Problem 3 208
10.3.4 Incremental Updates for the Fixed Misclassification Probability Model .. 208
10.3.5 Selection Criteria for Problem 1 209
10.3.6 Selection Criteria for Problems 2.1, 2.2, and 2.3 ... 210
10.3.7 Selection Criterion for Problem 3 210
10.4 Experimental Results 215
10.4.1 Experimental Results for Problem 1 215
10.4.2 Experimental Results for Problem 2 217
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.7.4 Experimental Setting for the Guided Learning Approach</td>
<td>268</td>
</tr>
<tr>
<td>13.8 Results for the Leave-One-Out and the 30/30 Cross Validations</td>
<td>269</td>
</tr>
<tr>
<td>13.9 Results for the Guided Learning Approach</td>
<td>272</td>
</tr>
<tr>
<td>13.10 Concluding Remarks</td>
<td>275</td>
</tr>
<tr>
<td>14 First Case Study: Predicting Muscle Fatigue from EMG Signals</td>
<td>277</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>277</td>
</tr>
<tr>
<td>14.2 General Problem Description</td>
<td>277</td>
</tr>
<tr>
<td>14.3 Experimental Data</td>
<td>279</td>
</tr>
<tr>
<td>14.4 Analysis of the EMG Data</td>
<td>280</td>
</tr>
<tr>
<td>14.4.1 The Effects of Load and Electrode Orientation</td>
<td>280</td>
</tr>
<tr>
<td>14.4.2 The Effects of Muscle Condition, Load, and Electrode Orientation</td>
<td>280</td>
</tr>
<tr>
<td>14.5 A Comparative Analysis of the EMG Data</td>
<td>281</td>
</tr>
<tr>
<td>14.5.1 Results by the OCAT/RA1 Approach</td>
<td>282</td>
</tr>
<tr>
<td>14.5.2 Results by Fisher’s Linear Discriminant Analysis</td>
<td>283</td>
</tr>
<tr>
<td>14.5.3 Results by Logistic Regression</td>
<td>284</td>
</tr>
<tr>
<td>14.5.4 A Neural Network Approach</td>
<td>285</td>
</tr>
<tr>
<td>14.6 Concluding Remarks</td>
<td>287</td>
</tr>
<tr>
<td>15 Second Case Study: Inference of Diagnostic Rules for Breast Cancer</td>
<td>289</td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>289</td>
</tr>
<tr>
<td>15.2 Description of the Data Set</td>
<td>289</td>
</tr>
<tr>
<td>15.3 Description of the Inferred Rules</td>
<td>292</td>
</tr>
<tr>
<td>15.4 Concluding Remarks</td>
<td>296</td>
</tr>
<tr>
<td>16 A Fuzzy Logic Approach to Attribute Formalization: Analysis of Lobulation for Breast Cancer Diagnosis</td>
<td>297</td>
</tr>
<tr>
<td>16.1 Introduction</td>
<td>297</td>
</tr>
<tr>
<td>16.2 Some Background Information on Digital Mammography</td>
<td>297</td>
</tr>
<tr>
<td>16.3 Some Background Information on Fuzzy Sets</td>
<td>299</td>
</tr>
<tr>
<td>16.4 Formalization with Fuzzy Logic</td>
<td>300</td>
</tr>
<tr>
<td>16.5 Degrees of Lobularity and Microlobularity</td>
<td>306</td>
</tr>
<tr>
<td>16.6 Concluding Remarks</td>
<td>308</td>
</tr>
<tr>
<td>17 Conclusions</td>
<td>309</td>
</tr>
<tr>
<td>17.1 General Concluding Remarks</td>
<td>309</td>
</tr>
<tr>
<td>17.2 Twelve Key Areas of Potential Future Research on Data Mining and Knowledge Discovery from Databases</td>
<td>310</td>
</tr>
<tr>
<td>17.2.1 Overfitting and Overgeneralization</td>
<td>310</td>
</tr>
<tr>
<td>17.2.2 Guided Learning</td>
<td>311</td>
</tr>
<tr>
<td>17.2.3 Stochasticity</td>
<td>311</td>
</tr>
<tr>
<td>17.2.4 More on Monotonicity</td>
<td>311</td>
</tr>
<tr>
<td>17.2.5 Visualization</td>
<td>311</td>
</tr>
<tr>
<td>17.2.6 Systems for Distributed Computing Environments</td>
<td>312</td>
</tr>
</tbody>
</table>
17.2.7 Developing Better Exact Algorithms and Heuristics 312
17.2.8 Hybridization and Other Algorithmic Issues 312
17.2.9 Systems with Self-Explanatory Capabilities 313
17.2.10 New Systems for Image Analysis 313
17.2.11 Systems for Web Applications 313
17.2.12 Developing More Applications 314
17.3 Epilogue ... 314

References .. 317

Subject Index .. 335

Author Index ... 345

About the Author .. 349
Data Mining and Knowledge Discovery via Logic-Based Methods
Theory, Algorithms, and Applications
Triantaphyllou, E.
2010, XXXIV, 350 p. 91 illus., 9 illus. in color., Hardcover
ISBN: 978-1-4419-1629-7