Contents

1 **The Physical Brownian Motion: Diffusion And Noise**
 1.1 Einstein’s theory of diffusion 1
 1.2 The velocity process and Langevin’s approach 5
 1.3 The displacement process 10
 1.4 Classical theory of noise 13
 1.5 An application: Johnson noise 16
 1.6 Linear systems .. 21

2 **The Probability Space of Brownian Motion**
 2.1 Introduction ... 25
 2.2 The space of Brownian trajectories 27
 2.2.1 The Wiener measure of Brownian trajectories 37
 2.2.2 The MBM in \mathbb{R}^d 44
 2.3 Constructions of the MBM 46
 2.3.1 The Paley–Wiener construction of the Brownian motion . 46
 2.3.2 P. Lévy’s method and refinements 49
 2.4 Analytical and statistical properties of Brownian paths . 52
 2.4.1 The Markov property of the MBM 55
 2.4.2 Reflecting and absorbing walls 56
 2.4.3 MBM and martingales 60

3 **Itô Integration and Calculus**
 3.1 Integration of white noise 63
 3.2 The Itô, Stratonovich, and other integrals 66
 3.2.1 The Itô integral 66
 3.2.2 The Stratonovich integral 68
 3.2.3 The backward integral 73
 3.3 The construction of the Itô integral 74
 3.4 The Itô calculus 81

4 **Stochastic Differential Equations**
 4.1 Itô and Stratonovich SDEs 92
 4.2 Transformations of Itô equations 97
Contents

4.3 Solutions of SDEs are Markovian .. 101
4.4 Stochastic and partial differential equations 104
 4.4.1 The Andronov–Vitt–Pontryagin equation 109
 4.4.2 The exit distribution .. 111
 4.4.3 The PDF of the FPT .. 114
4.5 The Fokker–Planck equation ... 119
4.6 The backward Kolmogorov equation 124
4.7 Appendix: Proof of Theorem 4.1.1 125
 4.7.1 Continuous dependence on parameters 131

5 The Discrete Approach and Boundary Behavior 133
 5.1 The Euler simulation scheme and its convergence 133
 5.2 The pdf of Euler’s scheme in \mathbb{R} and the FPE 137
 5.2.1 Unidirectional and net probability flux density 145
 5.3 Boundary behavior of diffusions 150
 5.4 Absorbing boundaries .. 151
 5.4.1 Unidirectional flux and the survival probability 155
 5.5 Reflecting and partially reflecting boundaries 157
 5.5.1 Total and partial reflection in one dimension 158
 5.5.2 Partially reflected diffusion in higher dimensions 165
 5.5.3 Discontinuous coefficients 168
 5.5.4 Diffusion on a sphere ... 168
 5.6 The Wiener measure induced by SDEs 169
 5.7 Annotations .. 173

6 The First Passage Time of Diffusions 176
 6.1 The FPT and escape from a domain 176
 6.2 The PDF of the FPT .. 180
 6.3 The exit density and probability flux density 184
 6.4 The exit problem in one dimension 185
 6.4.1 The exit time .. 191
 6.4.2 Application of the Laplace method 194
 6.5 Conditioning ... 197
 6.5.1 Conditioning on trajectories that reach A before B 198
 6.6 Killing measure and the survival probability 202

7 Markov Processes and their Diffusion Approximations 207
 7.1 Markov processes .. 207
 7.1.1 The general form of the master equation 211
 7.1.2 Jump-diffusion processes 218
 7.2 A semi-Markovian example: Renewal processes 222
 7.3 Diffusion approximations of Markovian jump processes 230
 7.3.1 A refresher on solvability of linear equations 230
 7.3.2 Dynamics with large and fast jumps 231
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.3</td>
<td>Small jumps and the Kramers–Moyal expansion</td>
</tr>
<tr>
<td>7.3.4</td>
<td>An application to Brownian motion in a field of force</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Dynamics driven by wideband noise</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Boundary behavior of diffusion approximations</td>
</tr>
<tr>
<td>7.4</td>
<td>Diffusion approximation of the MFPT</td>
</tr>
<tr>
<td>8</td>
<td>Diffusion Approximations to Langevin’s Equation</td>
</tr>
<tr>
<td>8.1</td>
<td>The overdamped Langevin equation</td>
</tr>
<tr>
<td>8.1.1</td>
<td>The overdamped limit of the GLE</td>
</tr>
<tr>
<td>8.2</td>
<td>Smoluchowski expansion in the entire space</td>
</tr>
<tr>
<td>8.3</td>
<td>Boundary conditions in the Smoluchowski limit</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Appendix</td>
</tr>
<tr>
<td>8.4</td>
<td>Low-friction asymptotics of the FPE</td>
</tr>
<tr>
<td>8.5</td>
<td>The noisy underdamped forced pendulum</td>
</tr>
<tr>
<td>8.5.1</td>
<td>The noiseless underdamped forced pendulum</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Local fluctuations about a nonequilibrium steady state</td>
</tr>
<tr>
<td>8.5.3</td>
<td>The FPE and the MFPT far from equilibrium</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Application to the shunted Josephson junction</td>
</tr>
<tr>
<td>8.6</td>
<td>Annotations</td>
</tr>
<tr>
<td>9</td>
<td>Large Deviations of Markovian Jump Processes</td>
</tr>
<tr>
<td>9.1</td>
<td>The WKB structure of the stationary pdf</td>
</tr>
<tr>
<td>9.2</td>
<td>The mean time to a large deviation</td>
</tr>
<tr>
<td>9.3</td>
<td>Asymptotic theory of large deviations</td>
</tr>
<tr>
<td>9.3.1</td>
<td>More general sums</td>
</tr>
<tr>
<td>9.3.2</td>
<td>A central limit theorem for dependent variables</td>
</tr>
<tr>
<td>9.4</td>
<td>Annotations</td>
</tr>
<tr>
<td>10</td>
<td>Noise-Induced Escape From an Attractor</td>
</tr>
<tr>
<td>10.1</td>
<td>Asymptotic analysis of the exit problem</td>
</tr>
<tr>
<td>10.1.1</td>
<td>The exit problem for small diffusion with the flow</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Small diffusion against the flow</td>
</tr>
<tr>
<td>10.1.3</td>
<td>The MFPT of small diffusion against the flow</td>
</tr>
<tr>
<td>10.1.4</td>
<td>Escape over a sharp barrier</td>
</tr>
<tr>
<td>10.1.5</td>
<td>The MFPT to a smooth boundary and the escape rate</td>
</tr>
<tr>
<td>10.1.6</td>
<td>The MFPT eigenvalues of the Fokker–Planck operator</td>
</tr>
<tr>
<td>10.2</td>
<td>The exit problem in higher dimensions</td>
</tr>
<tr>
<td>10.2.1</td>
<td>The WKB structure of the pdf</td>
</tr>
<tr>
<td>10.2.2</td>
<td>The eikonal equation</td>
</tr>
<tr>
<td>10.2.3</td>
<td>The transport equation</td>
</tr>
<tr>
<td>10.2.4</td>
<td>The characteristic equations</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Boundary layers at noncharacteristic boundaries</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Boundary layers at characteristic boundaries in the plane</td>
</tr>
<tr>
<td>10.2.7</td>
<td>Exit through noncharacteristic boundaries</td>
</tr>
<tr>
<td>10.2.8</td>
<td>Exit through characteristic boundaries in the plane</td>
</tr>
</tbody>
</table>
10.2.9 Kramers’ exit problem .. 378
10.3 Activated escape in Langevin’s equation 382
 10.3.1 The separatrix in phase space 382
 10.3.2 Kramers’ exit problem at high and low friction 384
 10.3.3 The MFPT to the separatrix Γ 386
 10.3.4 Uniform approximation to Kramers’ rate 387
 10.3.5 The exit distribution on the separatrix 389
10.4 Annotations .. 397

11 Stochastic Stability ... 399
 11.1 Stochastic stability of nonlinear oscillators 403
 11.1.1 Underdamped pendulum with parametric noise 404
 11.1.2 The steady-state distribution of the noisy oscillator . 407
 11.1.3 First passage times and stability 410
 11.2 Stabilization with oscillations and noise 417
 11.2.1 Stabilization by high-frequency noise 417
 11.2.2 The generating equation 418
 11.2.3 The correlation-free equation 419
 11.2.4 The stability of (11.72) 421
 11.3 Stability of columns with noisy loads 425
 11.3.1 A thin column with a noisy load 426
 11.3.2 The double pendulum 429
 11.3.3 The damped vertically loaded double pendulum 434
 11.3.4 A tangentially loaded double pendulum (follower load) . 436
 11.3.5 The N-fold pendulum and the continuous column . 438

Bibliography ... 442

Index .. 459
Theory and Applications of Stochastic Processes
An Analytical Approach
Schuss, Z.
2010, XVII, 468 p., Hardcover
ISBN: 978-1-4419-1604-4