Preface

“After that, it was down to attitude.”

Ian Rankin
Black & Blue

The purpose of this book is to provide a self-contained entry into Monte Carlo computational techniques. First and foremost, it must not be confused with a programming addendum to our earlier book Monte Carlo Statistical Methods whose second edition came out in 2004. The current book has a different purpose, namely to make a general audience familiar with the programming aspects of Monte Carlo methodology through practical implementation. Not only have we introduced R at the core of this book, but the emphasis and contents have changed drastically from Monte Carlo Statistical Methods, even though the overall vision remains the same. Theoretical foundations are intentionally avoided in the current book.

Indeed, the emphasis on practice is a major feature of this book in that its primary audience consists of graduate students in statistics, biostatistics, engineering, etc., who need to learn how to use simulation methods as a tool to analyze their experiments and/or datasets. The book should appeal to scientists in all fields, given the versatility of these Monte Carlo tools. It can also be used for a more classical statistics audience when aimed at teaching a quick entry into modern computational methods based on R, at the end of an undergraduate program for example, even though this may prove challenging for some students.

The choice of the programming language R, as opposed to faster alternatives such as Matlab or C and more structured constructs such as BUGS, is due to its pedagogical simplicity and its versatility. Readers can easily conduct experiments in their own programming language by translating the examples provided in this book. (Obviously, the book can also supplement other textbooks on Bayesian modeling at the graduate level, including our books Bayesian Choice (Robert, 2001) and Monte Carlo Statistical Methods (Robert
This book can also be viewed as a companion to, rather than a competitor of, Jim Albert’s Use R! book *Bayesian Computation with R* (Albert, 2009). Indeed, taken as a pair, these two books can provide a fairly thorough introduction to Monte Carlo methods and Bayesian modeling.

We stress that, at a production level (that is, when using advanced Monte Carlo techniques or analyzing large datasets), **R** cannot be recommended as the default language, but the expertise gained from this book should make the switch to another language seamless.

Contrary to usual practice, many exercises are interspersed within the chapters rather than postponed until the end of each chapter. There are two reasons for this stylistic choice. First, the results or developments contained in those exercises are often relevant for upcoming points in the chapter. Second, they signal to the student (or to any reader) that some pondering over the previous pages may be useful before moving to the following topic and so may act as self-checking gateways. Additional exercises are found at the end of each chapter, with abridged solutions of the odd-numbered exercises provided on our Webpages as well as Springer’s.

Thanks

We are immensely grateful to colleagues and friends for their help with this book, in particular to the following people: Ed George for his comments on the general purpose of the book and some exercises in particular; Jim Hobert and Fernando Quintana for helpful discussions on the Monte Carlo EM; Alessandra Iacobucci for signaling in due time a fatal blunder; Jean-Michel Marin for letting us recycle the first chapter of *Bayesian Core* (Marin and Robert, 2007) into our introduction to **R** and for numerous pieces of **R** advice, as well as pedagogical suggestions; Antonietta Mira for pointing out mistakes during a session of an MCMC conference in Warwick; François Perron for inviting CPR to Montréal and thus providing him with a time window to complete Chapter 8 (only shortened by an ice-climbing afternoon in Québec!), and also François Perron and Clémentine Trimont for testing the whole book from the perspectives of a professor and a student, respectively; Martyn Plummer for answering queries about **coda**; Jeff Rosenthal for very helpful exchanges on **amcmc**; Dimitris Rizopoulos for providing Exercise 7.21; and Phil Spector from Berkeley for making available his detailed and helpful notes and slides on **R** and **C**, now partly published as Spector (2009). Comments from both reviewers were especially useful in finalizing the book. We are also grateful to John Kimmel of Springer for his advice and efficiency, as well as for creating the visionary Use R! series and supporting the development of the **R** language that way. From a distance, we also wish to thank Professors Gentleman and Ihaka for creating the **R** language and for doing it in open-source, as well as the entire **R** community for contributing endlessly to its development.

Sceaux and Gainesville

Christian P. Robert and George Casella

October 18, 2009
Introducing Monte Carlo Methods with R
Robert, C.; Casella, G.
2010, XX, 284 p., Softcover
ISBN: 978-1-4419-1575-7