Contents

1 Linear Equations, Inequalities, Linear Programming:
A Brief Historical Overview .. 1
 1.1 Mathematical Modeling, Algebra, Systems of Linear
 Equations, and Linear Algebra .. 1
 1.1.1 Elimination Method for Solving Linear Equations 2
 1.2 Review of the GJ Method for Solving Linear Equations:
 Revised GJ Method .. 5
 1.2.1 GJ Method Using the Memory Matrix
 to Generate the Basis Inverse 8
 1.2.2 The Revised GJ Method with Explicit Basis Inverse 11
 1.3 Lack of a Method to Solve Linear Inequalities Until Modern Times 14
 1.3.1 The Importance of Linear Inequality
 Constraints and Their Relation to Linear Programs 15
 1.4 Fourier Elimination Method for Linear Inequalities 17
 1.5 History of the Simplex Method for LP 18
 1.6 The Simplex Method for Solving LPs and Linear
 Inequalities Viewed as an Extension of the GJ Method 19
 1.6.1 Generating the Phase I Problem if No Feasible
 Solution Available for the Original Problem 19
 1.7 The Importance of LP .. 21
 1.7.1 Marginal Values and Other Planning Tools
 that can be Derived from the LP Model 22
 1.8 Dantzig’s Contributions to Linear Algebra, Convex
 Polyhedra, OR, Computer Science 27
 1.8.1 Contributions to OR .. 27
 1.8.2 Contributions to Linear Algebra and Computer Science 27
 1.8.3 Contributions to the Mathematical Study
 of Convex Polyhedra ... 28
 1.9 Interior Point Methods for LP ... 29
 1.10 Newer Methods ... 30
 1.11 Conclusions ... 30
 1.12 How to Be a Successful Decision Maker? 30
 1.13 Exercises .. 31
References ... 37
2 Formulation Techniques Involving Transformations of Variables ... 39
 2.1 Operations Research: The Science of Better ... 39
 2.2 Differentiable Convex and Concave Functions ... 40
 2.2.1 Convex and Concave Functions ... 40
 2.3 Piecewise Linear (PL) Functions .. 46
 2.3.1 Convexity of PL Functions of a Single Variable .. 47
 2.3.2 PL Convex and Concave Functions in Several Variables 48
 2.4 Optimizing PL Functions Subject to Linear Constraints .. 53
 2.4.1 Minimizing a Separable PL Convex Function Subject to Linear Constraints ... 53
 2.4.2 Min-max, Max-min Problems ... 57
 2.4.3 Minimizing Positive Linear Combinations of Absolute Values of Affine Functions ... 59
 2.4.4 Minimizing the Maximum of the Absolute Values of Several Affine Functions ... 61
 2.4.5 Minimizing Positive Combinations of Excesses/Shortages 69
 2.5 Multiobjective LP Models ... 72
 2.5.1 Practical Approaches for Handling Multiobjective LPs in Current Use 74
 2.5.2 Weighted Average Technique .. 75
 2.5.3 The Goal Programming Approach .. 76
 2.6 Exercises .. 79
References.. 124

3 Intelligent Modeling Essential to Get Good Results ... 127
 3.1 The Need for Intelligent Modeling in Real World Decision Making ... 127
 3.2 Case Studies Illustrating the Need for Intelligent Modeling 128
 3.2.1 Case Study 1: Application in a Container Shipping Terminal 128
 3.2.2 Case Study 2: Application in a Bus Rental Company 140
 3.2.3 Case Study 3: Allocating Gates to Flights at an International Airport 150
 3.3 Murty’s Three Commandments for Successful Decision Making ... 164
 3.4 Exercises .. 164
References.. 165

4 Polyhedral Geometry ... 167
 4.1 Hyperplanes, Half-Spaces, and Convex Polyhedra .. 167
 4.1.1 Expressing a Linear Equation as a Pair of Inequalities 167
 4.1.2 Straight Lines, Half-Lines, and Their Directions .. 169
 4.1.3 Convex Combinations, Line Segments .. 170
4.2 Tight (Active)/Slack (Inactive) Constraints at a Feasible Solution

4.2.1 What is the Importance of Classifying the Constraints in a System as Active/Inactive at a Feasible Solution? ... 173

4.3 Subspaces, Affine Spaces, Convex Polyhedra; Binding, Nonbinding, Redundant Inequalities; Minimal Representations 174

4.4 The Interior and the Boundary of a Convex Polyhedron 176

4.5 Supporting Hyperplanes, Faces of a Convex Polyhedron, Optimum Face for an LP .. 177

4.5.1 Supporting Hyperplanes 177

4.5.2 Faces of a Convex Polyhedron 178

4.6 Zero-Dimensional Faces, or Extreme Points, or Basic Feasible Solutions (BFSs) ... 180

4.6.1 Nondegenerate, Degenerate BFSs for Systems in Standard Form ... 184

4.6.2 Basic Vectors and Bases for a System in Standard Form ... 185

4.6.3 BFSs for Systems in Standard Form for Bounded Variables ... 187

4.7 Purification Routine for Deriving a BFSs from a Feasible Solution for Systems in Standard Form 188

4.7.1 The Main Strategy of the Purification Routine 189

4.7.2 General Step in the Purification Routine 190

4.7.3 Purification Routine for Systems in Symmetric Form 196

4.8 Edges, One-Dimensional Faces, Adjacency of Extreme Points, Extreme Directions .. 204

4.8.1 How to Check if a Given Feasible Solution is on an Edge . 205

4.9 Adjacency in a Primal Simplex Pivot Step 212

4.10 How to Obtain All Adjacent Extreme Points of a Given Extreme Point? ... 218

4.11 Faces of Dimension ≥2 of a Convex Polyhedron 221

4.11.1 Facets of a Convex Polyhedron 222

4.12 Optimality Criterion in the Primal Simplex Algorithm 223

4.13 Boundedness of Convex Polyhedra 226

4.14 Exercises .. 229

References ... 233

5 Duality Theory and Optimality Conditions for LPs 235

5.1 The Dual Problem .. 235

5.2 Deriving the Dual by Rational Economic Arguments 236

5.2.1 Dual Variables are Marginal Values 238

5.2.2 The Dual of the General Problem in This Form 238

5.3 Rules for Writing the Dual of a General LP 239

5.3.1 Complementary Pairs in a Primal, Dual Pair of LPs 241

5.3.2 What Is the Importance of Complementary Pairs? 242

5.3.3 Complementary Pairs for LPs in Standard Form 242
5.3.4 Complementary Pairs for LPs in Symmetric Form 244
5.3.5 Complementary Pairs for LPs in Bounded Variable Standard Form .. 245
5.4 Duality Theory and Optimality Conditions for LP 247
5.4.1 The Importance of Good Lower Bounding Strategies in Solving Optimization Problems 249
5.4.2 Definition of the Dual Solution Corresponding to Each Primal Basic Vector for an LP in Standard Form .. 251
5.4.3 Properties Satisfied by the Primal and Dual Basic Solutions Corresponding to a Primal Basic Vector .. 254
5.4.4 The Duality Theorem of LP ... 257
5.4.5 Optimality Conditions for LP .. 258
5.4.6 Necessary and Sufficient Optimality Conditions for LP 260
5.4.7 Duality Gap, a Measure of Distance from Optimality 260
5.4.8 Using CS Conditions to Check the Optimality of a Given Feasible Solution to an LP 261
5.5 How Various Algorithms Solve LPs 268
5.6 How to Check if an Optimum Solution is Unique 269
5.6.1 Primal and Dual Degeneracy of a Basic Vector for an LP in Standard Form 269
5.6.2 Sufficient Conditions for Checking the Uniqueness of Primal and Dual Optimum Solutions ... 271
5.6.3 Procedure to Check if the BFS Corresponding to an Optimum Basic Vector x_B is the Unique Optimum Solution .. 272
5.6.4 The Optimum Face for an LP ... 275
5.7 Mathematical Equivalence of LP to the Problem of Finding a Feasible Solution of a System of Linear Constraints Involving Inequalities .. 276
5.8 Marginal Values and the Dual Optimum Solution 277
5.9 Summary of Optimality Conditions for Continuous Variable Nonlinear Programs and Their Relation to Those for LP .. 279
5.9.1 Global Minimum (Maximum), Local Minimum (Maximum), and Stationary Points 279
5.9.2 Relationship to Optimality Conditions for LP Discussed Earlier .. 284
5.10 Exercises .. 285
References ... 296

6 Revised Simplex Variants of the Primal and Dual Simplex Methods and Sensitivity Analysis 297
6.1 Primal Revised Simplex Algorithm Using the Explicit Basis Inverse 298
6.1.1 Steps in an Iteration of the Primal Simplex Algorithm When \((x_B, -z)\) is the Primal Feasible Basic Vector ... 299

6.1.2 Practical Consequences of Satisfying the Unboundedness Criterion 306

6.1.3 Features of the Simplex Algorithm ... 307

6.2 Revised Primal Simplex Method (Phase I, II) with Explicit Basis Inverse ... 307

6.2.1 Setting Up the Phase I Problem ... 307

6.3 How to Find a Feasible Solution to a System of Linear Constraints 314

6.4 Infeasibility Analysis .. 316

6.5 Practical Usefulness of the Revised Simplex Method Using Explicit Basis Inverse 318

6.6 Cycling in the Simplex Method ... 319

6.7 Revised Simplex Method Using the Product Form of the Inverse ... 320

6.7.1 Pivot Matrices .. 320

6.7.2 A General Iteration in the Revised Simplex Method Using the Product Form of the Inverse 321

6.7.3 Transition from Phase I to Phase II ... 322

6.7.4 Reinversions in the Revised Simplex Method Using PFI ... 323

6.8 Revised Simplex Method Using Other Factorizations of the Basis Inverse 324

6.9 Finding the Optimum Face of an LP (Alternate Optimum Solutions) 324

6.10 The Dual Simplex Algorithm ... 326

6.10.1 Properties of the Dual Simplex Algorithm 334

6.11 Importance of the Dual Simplex Algorithm, How to Get New Optimum Efficiently When RHS Changes or New Constraints Are Added to the Model ... 337

6.11.1 The Dual Simplex Method ... 342

6.12 Marginal Analysis .. 342

6.12.1 How to Compute the Marginal Values in a General LP Model ... 345

6.13 Sensitivity Analysis .. 347

6.13.1 Introducing a New Nonnegative Variable ... 347

6.13.2 Ranging the Cost Coefficient or an I/O Coefficient in a Nonbasic Column Vector 349

6.13.3 Ranging a Basic Cost Coefficient ... 352

6.13.4 Ranging the RHS Constants ... 353

6.13.5 Features of Sensitivity Analysis Available in Commercial LP Software 354

6.13.6 Other Types of Sensitivity Analyses ... 355

6.14 Revised Primal Simplex Method for Solving Bounded Variable LP Models 355

6.14.1 The Bounded Variable Primal Simplex Algorithm ... 358
7 Interior Point Methods for LP

7.1 Boundary Point and Interior Point Methods ... 393
7.2 Interior Feasible Solutions ... 394
7.3 General Introduction to Interior Point Methods 394
7.4 Center, Analytic Center, Central Path ... 399
7.5 The Affine Scaling Method ... 401
7.6 Newton’s Method for Solving Systems of Nonlinear Equations 408
7.7 Primal-Dual Path Following Methods .. 409
7.8 Summary of Results on the Primal-Dual IPMs 414
7.9 Exercises .. 415
References.. 416

8 Sphere Methods for LP

8.1 Introduction .. 417
8.2 Ball Centers: Geometric Concepts ... 422
8.3 Approximate Computation of Ball Centers .. 425
8.3.1 Approximate Computation of Ball Centers of Polyhedra 425
8.3.2 Computing An Approximate Ball Center of K on the Current Objective Plane .. 430
8.3.3 Ball Centers of Some Simple Special Polytopes 430
8.4 Sphere Method 1 ... 431
8.4.1 Summary of Computational Results on Sphere Method 1 435
8.5 Sphere Method 2 ... 436
8.6 Improving the Performance of Sphere Methods Further 439
8.7 Some Open Theoretical Research Problems ... 440
8.8 Future Research Directions ... 442
8.9 Exercises .. 442
References.. 444

9 Quadratic Programming Models

9.1 Introduction .. 445
9.2 Superdiagonalization Algorithm for Checking PD and PSD 446
9.3 Classification of Quadratic Programs .. 451
9.4 Types of Solutions and Optimality Conditions 452
9.5 What Types of Solutions Can Be Computed Efficiently by Existing Algorithms? .. 454
9.6 Some Important Applications of QP ... 455
References.. 456
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7</td>
<td>Unconstrained Quadratic Minimization in Classical Mathematics</td>
<td>458</td>
</tr>
<tr>
<td>9.8</td>
<td>Summary of Some Existing Algorithms for Constrained QPs</td>
<td>459</td>
</tr>
<tr>
<td>9.9</td>
<td>The Sphere Method for QP</td>
<td>461</td>
</tr>
<tr>
<td>9.9.1</td>
<td>Procedure for Getting an Approximate Solution for (9.6)</td>
<td>462</td>
</tr>
<tr>
<td>9.9.2</td>
<td>Descent Steps</td>
<td>464</td>
</tr>
<tr>
<td>9.9.3</td>
<td>The Algorithm</td>
<td>467</td>
</tr>
<tr>
<td>9.9.4</td>
<td>The Case when the Matrix (D) is not Positive Definite</td>
<td>468</td>
</tr>
<tr>
<td>9.10</td>
<td>Commercially Available Software</td>
<td>469</td>
</tr>
<tr>
<td>9.11</td>
<td>Exercises</td>
<td>470</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>475</td>
</tr>
</tbody>
</table>

Epilogue | | 477 |

Index | | 479 |
Optimization for Decision Making
Linear and Quadratic Models
Murty, K.G.
2010, XXVI, 482 p. 47 illus., Hardcover