Contents

1 Data Mining and Information Systems: Quo Vadis? 1
Robert Stahlbock, Stefan Lessmann, and Sven F. Crone
1.1 Introduction .. 1
1.2 Special Issues in Data Mining 3
 1.2.1 Confirmatory Data Analysis 3
 1.2.2 Knowledge Discovery from Supervised Learning 4
 1.2.3 Classification Analysis 6
 1.2.4 Hybrid Data Mining Procedures 8
 1.2.5 Web Mining ... 10
 1.2.6 Privacy-Preserving Data Mining 11
1.3 Conclusion and Outlook 12
References ... 13

Part I Confirmatory Data Analysis

2 Response-Based Segmentation Using Finite Mixture Partial Least
 Squares ... 19
Christian M. Ringle, Marko Sarstedt, and Erik A. Mooi
2.1 Introduction .. 20
 2.1.1 On the Use of PLS Path Modeling 20
 2.1.2 Problem Statement 22
 2.1.3 Objectives and Organization 23
2.2 Partial Least Squares Path Modeling 24
2.3 Finite Mixture Partial Least Squares Segmentation 26
 2.3.1 Foundations ... 26
 2.3.2 Methodology .. 28
 2.3.3 Systematic Application of FIMIX-PLS 31
2.4 Application of FIMIX-PLS 34
 2.4.1 On Measuring Customer Satisfaction 34
 2.4.2 Data and Measures 34
 2.4.3 Data Analysis and Results 36
2.5 Summary and Conclusion 44
References .. 45

Part II Knowledge Discovery from Supervised Learning

3 Building Acceptable Classification Models 53
David Martens and Bart Baesens
3.1 Introduction ... 54
3.2 Comprehensibility of Classification Models 55
 3.2.1 Measuring Comprehensibility 57
 3.2.2 Obtaining Comprehensible Classification Models ... 58
3.3 Justifiability of Classification Models 59
 3.3.1 Taxonomy of Constraints 60
 3.3.2 Monotonicity Constraint 62
 3.3.3 Measuring Justifiability 63
 3.3.4 Obtaining Justifiable Classification Models 68
3.4 Conclusion ... 70
References .. 71

4 Mining Interesting Rules Without Support Requirement: A General Universal Existential Upward Closure Property 75
Yannick Le Bras, Philippe Lenca, and Stéphane Lallich
4.1 Introduction ... 76
4.2 State of the Art .. 77
4.3 An Algorithmic Property of Confidence 80
 4.3.1 On UEUC Framework 80
 4.3.2 The UEUC Property 80
 4.3.3 An Efficient Pruning Algorithm 81
 4.3.4 Generalizing the UEUC Property 82
4.4 A Framework for the Study of Measures 84
 4.4.1 Adapted Functions of Measure 84
 4.4.2 Expression of a Set of Measures of $D_{d_{conf}}$ 87
4.5 Conditions for GUEUC 90
 4.5.1 A Sufficient Condition 90
 4.5.2 A Necessary Condition 91
 4.5.3 Classification of the Measures 92
4.6 Conclusion ... 94
References .. 95

5 Classification Techniques and Error Control in Logic Mining 99
Giovanni Felici, Bruno Simeone, and Vincenzo Spinelli
5.1 Introduction ... 100
5.2 Brief Introduction to Box Clustering 102
5.3 BC-Based Classifier 104
5.4 Best Choice of a Box System 108
5.5 Bi-criterion Procedure for BC-Based Classifier 111
5.6 Examples ... 112
5.6.1 The Data Sets .. 112
5.6.2 Experimental Results with BC 113
5.6.3 Comparison with Decision Trees 115
5.7 Conclusions .. 117
References ... 117

Part III Classification Analysis

6 An Extended Study of the Discriminant Random Forest 123
 Tracy D. Lemmond, Barry Y. Chen, Andrew O. Hatch,
 and William G. Hanley
 6.1 Introduction ... 123
 6.2 Random Forests .. 124
 6.3 Discriminant Random Forests 125
 6.3.1 Linear Discriminant Analysis 126
 6.3.2 The Discriminant Random Forest Methodology 127
 6.4 DRF and RF: An Empirical Study 128
 6.4.1 Hidden Signal Detection 129
 6.4.2 Radiation Detection 132
 6.4.3 Significance of Empirical Results 136
 6.4.4 Small Samples and Early Stopping 137
 6.4.5 Expected Cost ... 143
 6.5 Conclusions ... 143
References ... 145

7 Prediction with the SVM Using Test Point Margins 147
 Süreyya Özöğür-Akyüz, Zakria Hussain, and John Shawe-Taylor
 7.1 Introduction ... 147
 7.2 Methods ... 151
 7.3 Data Set Description .. 154
 7.4 Results .. 154
 7.5 Discussion and Future Work 155
References ... 157

8 Effects of Oversampling Versus Cost-Sensitive Learning for
 Bayesian and SVM Classifiers 159
 Alexander Liu, Cheryl Martin, Brian La Cour, and Joydeep Ghosh
 8.1 Introduction ... 159
 8.2 Resampling ... 161
 8.2.1 Random Oversampling 161
 8.2.2 Generative Oversampling 161
 8.3 Cost-Sensitive Learning 162
 8.4 Related Work .. 163
 8.5 A Theoretical Analysis of Oversampling Versus Cost-Sensitive
 Learning ... 164
8.5.1 Bayesian Classification .. 164
8.5.2 Resampling Versus Cost-Sensitive Learning in Bayesian Classifiers .. 165
8.5.3 Effect of Oversampling on Gaussian Naive Bayes 166
8.5.4 Effects of Oversampling for Multinomial Naive Bayes 168
8.6 Empirical Comparison of Resampling and Cost-Sensitive Learning ... 170
8.6.1 Explaining Empirical Differences Between Resampling and Cost-Sensitive Learning .. 170
8.6.2 Naive Bayes Comparisons on Low-Dimensional Gaussian Data .. 171
8.6.3 Multinomial Naive Bayes .. 176
8.6.4 SVMs .. 178
8.6.5 Discussion ... 181
8.7 Conclusion .. 182
Appendix .. 183
References .. 190

9 The Impact of Small Disjuncts on Classifier Learning 193
Gary M. Weiss
9.1 Introduction ... 193
9.2 An Example: The Vote Data Set ... 195
9.3 Description of Experiments .. 197
9.4 The Problem with Small Disjuncts .. 198
9.5 The Effect of Pruning on Small Disjuncts 202
9.6 The Effect of Training Set Size on Small Disjuncts 210
9.7 The Effect of Noise on Small Disjuncts 213
9.8 The Effect of Class Imbalance on Small Disjuncts 217
9.9 Related Work .. 220
9.10 Conclusion .. 223
References .. 225

Part IV Hybrid Data Mining Procedures

10 Predicting Customer Loyalty Labels in a Large Retail Database: A Case Study in Chile ... 229
Cristián J. Figueroa
10.1 Introduction .. 229
10.2 Related Work ... 231
10.3 Objectives of the Study ... 233
10.3.1 Supervised and Unsupervised Learning 234
10.3.2 Unsupervised Algorithms ... 234
10.3.3 Variables for Segmentation .. 238
10.3.4 Exploratory Data Analysis .. 239
10.3.5 Results of the Segmentation .. 240
10.4 Results of the Classifier ... 241
11 PCA-Based Time Series Similarity Search

Leonidas Karamitopoulos, Georgios Evangelidis, and Dimitris Dervos

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>256</td>
</tr>
<tr>
<td>11.2 Background</td>
<td>258</td>
</tr>
<tr>
<td>11.2.1 Review of PCA</td>
<td>258</td>
</tr>
<tr>
<td>11.2.2 Implications of PCA in Similarity Search</td>
<td>259</td>
</tr>
<tr>
<td>11.2.3 Related Work</td>
<td>261</td>
</tr>
<tr>
<td>11.3 Proposed Approach</td>
<td>263</td>
</tr>
<tr>
<td>11.4 Experimental Methodology</td>
<td>265</td>
</tr>
<tr>
<td>11.4.1 Data Sets</td>
<td>265</td>
</tr>
<tr>
<td>11.4.2 Evaluation Methods</td>
<td>266</td>
</tr>
<tr>
<td>11.4.3 Rival Measures</td>
<td>267</td>
</tr>
<tr>
<td>11.5 Results</td>
<td>268</td>
</tr>
<tr>
<td>11.5.1 1-NN Classification</td>
<td>268</td>
</tr>
<tr>
<td>11.5.2 k-NN Similarity Search</td>
<td>271</td>
</tr>
<tr>
<td>11.5.3 Speeding Up the Calculation of APEdist</td>
<td>272</td>
</tr>
<tr>
<td>11.6 Conclusion</td>
<td>274</td>
</tr>
</tbody>
</table>

12 Evolutionary Optimization of Least-Squares Support Vector Machines

Arjan Gijsbers, Giorgio Metta, and Léon Rothkrantz

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>278</td>
</tr>
<tr>
<td>12.2 Kernel Machines</td>
<td>278</td>
</tr>
<tr>
<td>12.2.1 Least-Squares Support Vector Machines</td>
<td>279</td>
</tr>
<tr>
<td>12.2.2 Kernel Functions</td>
<td>280</td>
</tr>
<tr>
<td>12.3 Evolutionary Computation</td>
<td>281</td>
</tr>
<tr>
<td>12.3.1 Genetic Algorithms</td>
<td>281</td>
</tr>
<tr>
<td>12.3.2 Evolution Strategies</td>
<td>282</td>
</tr>
<tr>
<td>12.3.3 Genetic Programming</td>
<td>283</td>
</tr>
<tr>
<td>12.4 Related Work</td>
<td>283</td>
</tr>
<tr>
<td>12.4.1 Hyperparameter Optimization</td>
<td>284</td>
</tr>
<tr>
<td>12.4.2 Combined Kernel Functions</td>
<td>284</td>
</tr>
<tr>
<td>12.5 Evolutionary Optimization of Kernel Machines</td>
<td>286</td>
</tr>
<tr>
<td>12.5.1 Hyperparameter Optimization</td>
<td>286</td>
</tr>
<tr>
<td>12.5.2 Kernel Construction</td>
<td>287</td>
</tr>
<tr>
<td>12.5.3 Objective Function</td>
<td>288</td>
</tr>
<tr>
<td>12.6 Results</td>
<td>289</td>
</tr>
<tr>
<td>12.6.1 Data Sets</td>
<td>289</td>
</tr>
</tbody>
</table>
12.6.2 Results for Hyperparameter Optimization 290
12.6.3 Results for EvoKMGP 293
12.7 Conclusions and Future Work 294
References 295

13 Genetically Evolved kNN Ensembles 299
Ulf Johansson, Rikard König, and Lars Niklasson
13.1 Introduction 299
13.2 Background and Related Work 301
13.3 Method 302
13.3.1 Data sets 305
13.4 Results 307
13.5 Conclusions 312
References 313

Part V Web-Mining

14 Behaviorally Founded Recommendation Algorithm for Browsing Assistance Systems 317
Peter Géczy, Noriaki Izumi, Shotaro Akaho, and Kōiti Hasida
14.1 Introduction 317
14.1.1 Related Works 318
14.1.2 Our Contribution and Approach 319
14.2 Concept Formalization 319
14.3 System Design 323
14.3.1 A Priori Knowledge of Human–System Interactions 323
14.3.2 Strategic Design Factors 323
14.3.3 Recommendation Algorithm Derivation 325
14.4 Practical Evaluation 327
14.4.1 Intranet Portal 328
14.4.2 System Evaluation 330
14.4.3 Practical Implications and Limitations 331
14.5 Conclusions and Future Work 332
References 333

15 Using Web Text Mining to Predict Future Events: A Test of the Wisdom of Crowds Hypothesis 335
Scott Ryan and Lutz Hamel
15.1 Introduction 335
15.2 Method 337
15.2.1 Hypotheses and Goals 337
15.2.2 General Methodology 339
15.2.3 The 2006 Congressional and Gubernatorial Elections 339
15.2.4 Sporting Events and Reality Television Programs 340
15.2.5 Movie Box Office Receipts and Music Sales 341
15.2.6 Replication 342
15.3 Results and Discussion .. 343
 15.3.1 The 2006 Congressional and Gubernatorial Elections 343
 15.3.2 Sporting Events and Reality Television Programs 345
 15.3.3 Movie and Music Album Results 347
15.4 Conclusion .. 348
References ... 349

Part VI Privacy-Preserving Data Mining

16 Avoiding Attribute Disclosure with the (Extended) p-Sensitive k-Anonymity Model ... 353
 Traian Marius Truta and Alina Campan
 16.1 Introduction ... 353
 16.2 Privacy Models and Algorithms 354
 16.2.1 The p-Sensitive k-Anonymity Model and Its Extension . 354
 16.2.2 Algorithms for the p-Sensitive k-Anonymity Model 357
 16.3 Experimental Results .. 360
 16.3.1 Experiments for p-Sensitive k-Anonymity 360
 16.3.2 Experiments for Extended p-Sensitive k-Anonymity 362
 16.4 New Enhanced Models Based on p-Sensitive k-Anonymity 366
 16.4.1 Constrained p-Sensitive k-Anonymity 366
 16.4.2 p-Sensitive k-Anonymity in Social Networks 370
 16.5 Conclusions and Future Work .. 372
References ... 372

17 Privacy-Preserving Random Kernel Classification of Checkerboard
 Partitioned Data .. 375
 Olvi L. Mangasarian and Edward W. Wild
 17.1 Introduction ... 375
 17.2 Privacy-Preserving Linear Classifier for Checkerboard
 Partitioned Data ... 379
 17.3 Privacy-Preserving Nonlinear Classifier for Checkerboard
 Partitioned Data ... 381
 17.4 Computational Results .. 382
 17.5 Conclusion and Outlook .. 384
References ... 386
Data Mining
Special Issue in Annals of Information Systems
Stahlbock, R.; Crone, S.F.; Lessmann, S. (Eds.)
2010, XIII, 387 p., Softcover
ISBN: 978-1-4419-1279-4