
Chapter 2
Multivariate Normal Distribution

In this chapter, we define univariate and multivariate normal distribution density
functions and then we discuss tests of differences of means for multiple variables
simultaneously across groups.

2.1 Univariate Normal Distribution

Just to refresh memory, in the case of a single random variable, the probability
distribution or density function of that variable x is represented by Equation (2.1):

�(x) = 1√
2πσ

exp

{
− 1

2σ 2 (x − μ)2
}

(2.1)

2.2 Bivariate Normal Distribution

The bivariate distribution represents the joint distribution of two random variables.
The two random variables x1 and x2 are related to each other in the sense that they
are not independent of each other. This dependence is reflected by the correlation
ρ between the two variables x1 and x2. The density function for the two variables
jointly is

�(x1,x2) = 1

2πσ1σ2

√
1 − ρ2

exp

{
− 1

2
(
1 − ρ2
)
[
(x1 − μ1)

2

σ 2
1

+ (x2 − μ2)
2

σ 2
2

−2ρ (x1 − μ1) (x2 − μ2)

σ1σ2

]}

(2.2)
This function can be represented graphically as in Fig. 2.1:
The Isodensity contour is defined as the set of points for which the values of

x1 and x2 give the same value for the density function �. This contour is given by
Equation (2.3) for a fixed value of C, which defines a constant probability:

(x1 − μ1)
2

σ 2
1

+ (x2 − μ2)
2

σ 2
2

− 2ρ
(x1 − μ1) (x2 − μ2)

σ1σ2
= C (2.3)
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Fig. 2.2 The locus of points
of the bivariate normal
distribution at a given density
level

Equation (2.3) defines an ellipse with centroid (μ1, μ2). This ellipse is the locus
of points representing the combinations of the values of x1 and x2 with the same
probability, as defined by the constant C (Fig. 2.2).

For various values of C, we get a family of concentric ellipses (at a different
cut, i.e., cross section of the density surface with planes at various elevations) (see
Fig. 2.3).
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Fig. 2.3 Concentric ellipses
at various density levels

The angle θ depends only on the values of σ 1, σ 2, and ρ but is independent of C.
The higher the correlation between x1 and x2, the steeper the line going through the
origin with angle θ , i.e., the bigger the angle.

2.3 Generalization to Multivariate Case

Let us represent the bivariate distribution in matrix algebra notation in order to
derive the generalized format for more than two random variables.

The covariance matrix of (x1, x2) can be written as

� =
[
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

]
(2.4)

The determinant of the matrix � is

|�| = σ 2
1 σ

2
2

(
1 − ρ2
)

(2.5)

Equation (2.3) can now be re-written as

C = [x1 − μ1,x2 − μ2]�−1
[

x1 − μ1
x2 − μ2

]
(2.6)

where

�−1 = 1/
[
σ 2

1 σ
2
2 (1 − ρ2)

] [
σ 2

2 −ρσ1σ2

−ρσ1σ2 σ 2
1

]
= 1

1 − ρ2

⎡
⎣

1
σ 2

1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ 2

2

⎤
⎦ (2.7)
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Note that �−1 = |�|–1 × matrix of cofactors.
Let

X =
[

x1 − μ1
x2 − μ2

]

then X′�−1X = χ2, which is a quadratic form of the variables x and is, therefore, a
chi-square variate.

Also, because |�| = σ 2
1 σ

2
2 (1−ρ2), |�|1/2 = σ1σ2

√
(1 − ρ2), and consequently,

1

2πσ1σ2

√
1 − ρ2

= (2π )−1 |�|−1/2 (2.8)

the bivariate distribution function can be now expressed in matrix notation as

�(x1,x2) = (2π)−1 |�|− 1
2 e− 1

2 X′
�−1X (2.9)

Now, more generally with p random variables (x1, x2, . . ., xp), let

x =

⎡
⎢⎢⎢⎣

x1
x2
...
xp

⎤
⎥⎥⎥⎦ ; μ =

⎡
⎢⎢⎢⎣
μ1
μ2
...
μp

⎤
⎥⎥⎥⎦ .

The density function is

�(x) = (2π)−p/2 |�|− 1
2 e

[
− 1

2 (x−μ)′�−1(x−μ)
]

(2.10)

For a fixed value of the density �, an ellipsoid is described. Let X = x − μ. The
inequality X′�−1X ≤ χ2 defines any point within the ellipsoid.

2.4 Tests About Means

2.4.1 Sampling Distribution of Sample Centroids

2.4.1.1 Univariate Distribution

A random variable is normally distributed with mean μ and variance σ 2:

x ∼ N
(
μ,σ 2
)

(2.11)

After n independent draws, the mean is randomly distributed with mean μ and
variance σ 2/n:

x̄ ∼ N

(
μ,
σ 2

n

)
(2.12)
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2.4.1.2 Multivariate Distribution

In the multivariate case with p random variables, where x = (x1, x2, . . ., xp), x is
normally distributed following the multivariate normal distribution with mean μ

and covariance �:
x ∼ N (μ,�) (2.13)

The mean vector for the sample of size n is denoted by

x̄ =

⎡
⎢⎢⎢⎣

x̄1
x̄2
...
x̄p

⎤
⎥⎥⎥⎦

This sample mean vector is normally distributed with a multivariate normal
distribution with mean μ and covariance �/n:

x̄ ∼ N

(
μ,
�

n

)
(2.14)

2.4.2 Significance Test: One-Sample Problem

2.4.2.1 Univariate Test

The univariate test is illustrated in the following example. Let us test the hypothesis
that the mean is 150 (i.e., μ0 = 150) with the following information:

σ 2 = 256; n = 64; x̄ = 154

Then, the z score can be computed as

z = 154 − 150√
256/64

= 4

16/8
= 2

At α = 0.05 (95% confidence interval), z = 1.96, as obtained from a normal
distribution table. Therefore, the hypothesis is rejected. The confidence interval is

[
154 − 1.96 × 12

6
, 154 + 1.96 × 12

6

]
= [150.08, 157.92]

This interval excludes 150. The hypothesis that μ0 = 150 is rejected. If the
variance σ had been unknown, the t statistic would have been used:

t = x̄ − μ0

s/
√

n
(2.15)

where s is the observed sample standard deviation.
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2.4.2.2 Multivariate Test with Known �

Let us take an example with two random variables:

� =
[

25 10
10 16

]
n = 36

x̄ =
[

20.3
12.6

]

The hypothesis is now about the mean values stated in terms of the two variables
jointly:

H: μ0 =
[

20
15

]

At the alpha level of 0.05, the value of the density function can be written
as below, which follows a chi-squared distribution at the specified significance
level α:

n (μ◦ − x̄)′�−1 (μ0 − x̄) ∼ χ2
p (α) (2.16)

Computing the value of the statistics,

|�| = 25 × 16 − 10 × 10 = 300

�−1 = 1

300

[
16 −10

−10 25

]

χ2 = 36 × 1

300
(20 − 20.3, 15 − 12.6)

[
16 −10

−10 25

] [
20 −20.3
15 −12.6

]
= 15.72

The critical value at an alpha value of 0.05 with two degrees of freedom is
provided by tables:

χ2
p=2 (α = 0.05) = 5.991

The observed value is greater than the critical value. Therefore, the hypothesis

that μ =
[

20
15

]
is rejected.

2.4.2.3 Multivariate Test with Unknown �

Just as in the univariate case, � is replaced with the sample value S/(n – 1),
where S is the sum-of-squares-and-cross-products (SSCP) matrix, which provides
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an unbiased estimate of the covariance matrix. The following statistics are then used
to test the hypothesis:

Hotelling: T2 = n (n − 1) (x̄ − μ0) ′S−1 (x̄ − μ0) (2.17)

where, if

X
n×p

d =

⎡
⎢⎢⎢⎣

x11 − x̄1 x21 − x̄2 · · ·
x12 − x̄1 x22 − x̄2 · · ·

...
...

x1n − x̄1 x2n − x̄2 · · ·

⎤
⎥⎥⎥⎦

S = Xd′
Xd

Hotelling showed that

n − p

(n − 1) p
T2 ∼ Fp

n−p (2.18)

Replacing T2 by its expression given above

n (n − p)

p
(x̄ − μ0)

′ S−1 (x̄ − μ0) ∼ Fp
n−p (2.19)

Consequently, the test is performed by computing the expression above and com-
paring its value with the critical value obtained in an F table with p and n – p degrees
of freedom.

2.4.3 Significance Test: Two-Sample Problem

2.4.3.1 Univariate Test

Let us define x̄1 and x̄2 as the means of a variable on two unrelated samples. The
test for the significance of the difference between the two means is given by

t = (x̄1 − x̄2)

s
√

1
n1

+ 1
n2

or t2 = (x̄1 − x̄2)
2

s2
(

n1+n2
n1n2

) (2.20)

where

s =

√
(n1 − 1)

∑
i

x2
1i

n1−1 + (n2 − 1)

∑
i

x2
2i

n2−1

(n1 − 1)+ (n2 − 1)
=

√√√√
∑

i
x2

1i +∑
i

x2
2i

n1 + n2 − 2
(2.21)
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s2 is the pooled within groups variance. It is an estimate of the assumed common
variance σ 2 of the two populations.

2.4.3.2 Multivariate Test

Let x(1) be the mean vector in sample 1 =

⎡
⎢⎢⎢⎢⎣

x̄(1)1
x̄(1)2

...
x̄(1)p

⎤
⎥⎥⎥⎥⎦and similarly for sample 2.

We need to test the significance of the difference between x̄(1) and x̄(2). We will
consider first the case where the covariance matrix, which is assumed to be the same
in the two samples, is known. Then we will consider the case where an estimate of
the covariance matrix needs to be used.

� Is Known (The Same in the Two Samples)

In this case, the difference between the two group means is normally distributed
with a multivariate normal distribution:

(
x̄(1) − x̄(2)

)
∼ N

(
μ1 − μ2, �

(
1

n1
+ 1

n2

))
(2.22)

The computations for testing the significance of the differences are similar to
those in Section 2.4.2.2 using the chi-square test.

� Is Unknown

If the covariance matrix is not known, it is estimated using the covariance matrices
within each group but pooled.

Let W be the within-groups SSCP (sum of squares cross products) matrix. This
matrix is computed from the matrix of deviations from the means on all p variables
for each of nk observations (individuals). For each group k,

X
nk×p

d(k) =

⎡
⎢⎢⎢⎢⎢⎣

x(k)11 − x̄(k)1 x(k)21 − x̄(k)2 · · ·
x(k)12 − x̄(k)1 x(k)22 − x̄(k)2 · · ·

...
...

x(k)1nk
− x̄(k)1 x(k)

2nk
− x̄(k)2 · · ·

⎤
⎥⎥⎥⎥⎥⎦

(2.23)
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For each of the two groups (each k), the SSCP matrix can be derived:

Sk = Xd(k)′
p×nk

Xd(k)
nk×p (2.24)

The pooled SSCP matrix for the more general case of K groups is simply:

W
p×p

= K
�

k=1
Sk

p×p
(2.25)

In the case of two groups, K is simply equal to 2.
Then, we can apply Hotelling’s T, just as in Section 2.4.2.3, where the proper

degrees of freedom depending on the number of observations in each group (nk) are
applied.

T2 =
(

x̄(1) − x̄(2)
)′ [ W

n1 + n2 − 2

n1 + n2

n1n2

]−1 (
x̄(1) − x̄(2)

)
(2.26)

= n1n2 (n1 + n2 − 2)

n1 + n2

(
x̄(1) − x̄(2)

)′
W−1
(

x̄(1) − x̄(2)
)

(2.27)

n1 + n2 − p − 1

(n1 + n2 − 2) p
T2 ∼ Fp

n1+n2−p−1 (2.28)

2.4.4 Significance Test: K-Sample Problem

As in the case of two samples, the null hypothesis is that the mean vectors across
the K groups are the same and the alternative hypothesis is that they are different.

Let us define Wilk’s likelihood-ratio criterion:

� = |W|
|T| (2.29)

where T = total SSCP matrix, W = within-groups SSCP matrix.
W is defined as in Equation (2.25). The total SSCP matrix is the sum of squared

cross products applied to the deviations from the grand means (i.e., the overall mean
across the total sample with the observations of all the groups for each variable).
Therefore, let the mean centered data for group k be noted as

X
nk×p

d∗(k) =

⎡
⎢⎢⎢⎢⎢⎣

x(k)11 − x̄1 x(k)21 − x̄2 · · ·
x(k)12 − x̄1 x(k)22 − x̄2 · · ·

...
...

x(k)1nk
− x̄1 x(k)

2nk
− x̄2 · · ·

⎤
⎥⎥⎥⎥⎥⎦

(2.30)

where x̄j is the overall mean of the j’s variate.
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Bringing the centered data for all the groups in the same data matrix leads to

X
nxp

d∗ =

⎡
⎢⎢⎢⎣

Xd∗(1)

Xd∗(2)

...
Xd∗(K)

⎤
⎥⎥⎥⎦ (2.31)

The total SSCP matrix T is then defined as

T
p×p

= Xd∗′
p×n

Xd∗
n×p

(2.32)

Intuitively, if we reduce the space to a single variate so that we are only deal-
ing with variances and no covariances, Wilk’s lambda is the ratio of the pooled
within-group variance to the total variance If the group means are the same, the
variances are equal and the ratio equals one. As the group means differ, the total
variance becomes larger than the pooled within-group variance. Consequently, the
ratio lambda becomes smaller. Because of the existence of more than one variate,
which implies more than one variance and covariances, the within SSCP and Total
SSCP matrices need to be reduced to a scalar in order to derive a scalar ratio. This
is the role of the determinants. However, the interpretation remains the same as for
the univariate case.

It should be noted that Wilk’s � can be expressed as a function of the
Eigenvalues of W–1B where B is the between-group covariance matrix (Eigenvalues
are explained in the next chapter). From the definition of � in Equation (2.29), it
follows that

1

�
= |T|

|W| =
∣∣∣W−1T

∣∣∣ =
∣∣∣W−1 (W+B)

∣∣∣ =
∣∣∣I+W−1B

∣∣∣ =
K∏

i=1

(1 + λi) (2.33)

and consequently

� = 1
K∏

i=1
(1 + λi)

=
K∏

i=1

1

(1 + λi)
(2.34)

Also, it follows that

Ln� = Ln
1

K∏
i=1
(1 + λi)

= −
K∑

i=1

(1 + λi) (2.35)

When Wilk’s � approaches 1, we showed that it means that the difference in
means is negligible. This is the case when Ln� approaches 0. However, when �
approaches 0 or Ln� approaches 1, it means that the difference is large. Therefore,
a large value of Ln� (i.e., close to 0) is an indication of the significance of the
difference between the means.
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Based on Wilk’s lambda, we present two statistical tests: Bartlett’s V and Rao’s R.
Let n = total sample size across samples, p = number of variables, and K =

number of groups (number of samples).
Bartlett’s V is approximately distributed as a chi-square when n – 1 – (p + K)/2

is large:

V = − [n − 1 − (p + K) /2
]

Ln� ∼ χ2
p(K−1) (2.36)

Bartlett’s V is relatively easy to calculate and can be used when n – 1 – (p + K)/2
is large.

Another test can be applied, as Rao’s R is distributed approximately as an F
variate. It is calculated as follows:

R = 1 −�1/s

�1/s

ms − p (K − 1) /2 + 1

p (K − 1)
≈ Fv1=p(K−1)

v2=ms−p(K−1)/2+1 (2.37)

where
m = n − 1 − (p + K) /2

s =
√

p2 (K − 1)2 − 4

p2 + (K − 1)2 − 5

2.5 Examples Using SAS

2.5.1 Test of the Difference Between Two Mean
Vectors – One-Sample Problem

In this example, the file “MKT_DATA” contains data about the market share of a
brand over seven periods, as well as the percentage of distribution coverage and the
price of the brand. These data correspond to one market, Norway. The question is
to know whether the market share, distribution coverage, and prices are similar or
different from the data of that same brand for the rest of Europe, i.e., with values of
market share, distribution coverage, and price, respectively of 0.17, 32.28, and 1.39.
The data are shown below in Table 2.1:

Table 2.1 Data example for the analysis of three variables

PERIOD M_SHARE DIST PRICE

1 0.038 11 0.98
2 0.044 11 1.08
3 0.039 9 1.13
4 0.03 9 1.31
5 0.036 14 1.36
6 0.051 14 1.38
7 0.044 9 1.34
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/* ************ Example2-1.sas ************** */ 
OPTIONS LS=80; 
DATA work; 
INFILE
"C:\SAMD2\Chapter2\Examples\Mkt_Data.csv"
dlm = ',' firstobs=2; 
INPUT PERIOD M_SHARE DIST PRICE; 
data work; 

set work (drop = period) ; 
run; 
/* Multivariate Test with Unknown Sigma */ 
proc iml; 
print " Multivariate Test with Unknown Sigma " ; 
print "--------------------------------------" ; 
use work;               /* Specifying the matrix with raw market data for Norway */ 
read all var {M_Share Dist Price} into Mkt_Data; 
start SSCP;                     /* SUBROUTINE for calculation of the SSCP matrix */ 
        n=nrow(x);                      /* Number of rows */ 
        mean=x[+,]/n;                   /* Column means   */ 
        x=x-repeat(mean,n,1);           /* Variances      */ 
        sscp = x`*x;                    /* SSCP matrix    */ 
finish sscp;                            /* END SUBROUTINE */ 
x=Mkt_Data;                             /* Definition of the data matrix */ 
p=ncol(Mkt_Data); 
run sscp;                               /* Execution of the SUBROUTINE   */ 
print SSCP  n p; 

Xbar = mean;                            /* Definition of the mean vector */ 
m_o = { 0.17 32.28 1.39 };              /* Myu zero: the mean vector for Europe */ 

dX = Xbar - m_o;                        /* Matrix of deviations */ 
dXt = dX`;                              /* Calculation of the transpose of dX */ 

print m_o; 
print Xbar; 
print dX; 

sscp_1 = inv(sscp);                 /* Calculation of the inverse of SSCP matrix */ 

T_sq = n*(n-1)*dX*sscp_1*dXt;           /* Calculation of the T_square    */ 
F    = T_sq*(n-p)/((n-1)*p);            /* Calculation of the F statistic */ 

Df_num = p;                        
Df_den = n-p ; 
F_crit = finv(.95,df_num,df_den); /* Critical F for .05 for df_num, df_den */ 
Print F F_crit; 
quit; 

Fig. 2.4 SAS input to perform the test of a mean vector (examp2-1.sas)

The SAS file showing the SAS code to compute the necessary statistics is shown
below in Fig. 2.4. The first lines correspond to the basic SAS instructions to read
the data from the file. Here, the data file was saved as a text file from Excel.
Consequently, the values in the file corresponding to different data points are sep-
arated by commas. This is indicated as the delimiter (“dlm”). Also, the data (first
observation) starts on line 2 because the first line is used for the names of the vari-
ables (as illustrated in Table 2.1). The variable called period is dropped so that only
the three variables needed for the analysis are kept in the SAS working data set. The
procedure IML is used to perform matrix algebra computations.

This file could easily be used for the analysis of different databases. Obviously,
it would be necessary to adapt some of the instructions, especially the file name and
path and the variables. Within the IML subroutine, only two things would need to
be changed: (1) the variables used for the analysis and (2) the values for the null
hypothesis (m_o).
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Multivariate Test with Unknown Sigma

 --------------------------------------

  3

SSCP N   P

0.0002734 0.035 0.0007786 7
0.035 30 0.66

0.0007786 0.66 0.1527714

M_O

0.17  32.28 1.39

XBAR

0.0402857 11 1.2257143

 DX

-0.129714 -21.28 -0.164286

F F_CRIT

588.72944 6.5913821

Fig. 2.5 SAS output of
analysis defined in Fig. 2.4
(examp2-1.lst)

The results are printed in the output file shown below in Fig. 2.5:
The critical F statistic with three and four degrees of freedom at the 0.05

confidence level is 6.591, while the computed value is 588.7, indicating that the
hypothesis of no difference is rejected.

2.5.2 Test of the Difference Between Several Mean
Vectors – K-Sample Problem

The next example considers similar data for three different countries (Belgium,
France, and England) for seven periods, as shown in Table 2.2. The question is
to know whether the mean vectors are the same for the three countries or not.

We first present an analysis that shows the matrix computations following pre-
cisely the equations presented in Section 2.4.4. These involve the same matrix
manipulations in SAS as in the prior example, using the IML procedure in SAS.
Then we present the MANOVA analysis proposed by SAS using the GLM proce-
dure. The readers who want to skip the detailed calculations can go directly to the
SAS GLM procedure.

The SAS file which derived the computations for the test statistics is shown
in Fig. 2.6.

The results are shown in the SAS output on Fig. 2.7.
These results indicate that the Bartlett’s V statistic of 82.54 is larger than the

critical chi-square with six degrees of freedom at the 0.05 confidence level (which is
12.59). Consequently, the hypothesis that the mean vectors are the same is rejected.
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Table 2.2 Data example for three variables in three countries (groups)

CNTRYNO CNTRY PERIOD M_SHARE DIST PRICE

1 BELG 1 0.223 61 1.53
1 BELG 2 0.22 69 1.53
1 BELG 3 0.227 69 1.58
1 BELG 4 0.212 67 1.58
1 BELG 5 0.172 64 1.58
1 BELG 6 0.168 64 1.53
1 BELG 7 0.179 62 1.69
2 FRAN 1 0.038 11 0.98
2 FRAN 2 0.044 11 1.08
2 FRAN 3 0.039 9 1.13
2 FRAN 4 0.03 9 1.31
2 FRAN 5 0.036 14 1.36
2 FRAN 6 0.051 14 1.38
2 FRAN 7 0.044 9 1.34
3 UKIN 1 0.031 3 1.43
3 UKIN 2 0.038 3 1.43
3 UKIN 3 0.042 3 1.3
3 UKIN 4 0.037 3 1.43
3 UKIN 5 0.031 13 1.36
3 UKIN 6 0.031 14 1.49
3 UKIN 7 0.036 14 1.56

The same conclusion could be derived from the Rao’s R statistic with its value of
55.10, which is larger than the corresponding F value with 6 and 32 degrees of
freedom, which is 2.399.

The first lines of SAS code in Fig. 2.8 read the data file in the same manner
as in the prior examples. However, the code that follows is much simpler as the
procedure automatically performs the MANOVA tests. For that analysis, the general
procedure of the General Linear Model is called with the statement “proc glm”. The
class statement indicates that the variable that follows (here “CNTRY”) is a discrete
(nominal scaled) variable. This is the variable used to determine the K groups. K is
calculated automatically according to the different values contained in the variable.
The model statement shows the list of the variates for which the means will be
compared on the left-hand side of the equal sign. The variable on the right-hand
side is the group variable. The GLM procedure is in fact a regression where the
dependent variables are regressed on the dummy variables automatically created by
SAS reflecting the various values of the grouping variable. The optional parameter
“nouni” after the slash indicates that the univariate tests should not be performed
(and consequently their corresponding output will not be shown). Finally, the last
line of code necessarily indicates that the MANOVA test concerns the differences
across the grouping variable, CNTRY.

The output shown in Fig. 2.9 provides the same information as shown in Fig. 2.7.
Wilk’s Lambda has the same value of 0.007787. In addition, several other tests are
provided for its significance, leading to the same conclusion that the differences in
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/*  ****************** Examp2-2.sas *******************  */ 
OPTIONS LS=80; 
DATA work; 
INFILE
"C:\SAMD2\CHAPTER2\EXAMPLES\Mkt_Dt_K.csv"
dlm = ',' firstobs=2; 
INPUT CNTRYNO CNTRY $ PERIOD M_SHARE DIST PRICE; 
data work; 

set work (drop = cntry period) ; 
proc print; 
proc freq; 
tables cntryno / out = Nk_out (keep = count); 
run; 
/* Significance Test: K-Sample Problem */ 
proc iml; 
reset center; 
print " Multivariate Significance Test: K-Sample Problem " ; 
print "--------------------------------------------------" ; 
use work ;       /* Specifying the matrix with raw data */ 
read all var { CNTRYNO M_SHARE DIST PRICE}  into Mkt_Data; 
use Nk_out; 
read all var {count} into Nk_new; 
   /* Number of observations within each group             */ 
n_tot = nrow(Mkt_Data); 
K=max(Mkt_Data[,1]);            /* Number of groups (samples) */ 
p=ncol(Mkt_Data)-1;             /* Number of variables */ 
print n_tot "    " K "   "  p; 
start SSCP;                     /* SUBROUTINE for calculation of the SSCP matrix        
*/ 
        n=nrow(x); 
        mean=x[+,]/n;           /* Column means (mean vector)                           
*/ 
        x=x-repeat(mean,n,1);   /* Matrix of variances                                  
*/ 
        SSCP = x`*x;            /* SSCP matrix                                          
*/ 
print i "     "  mean; 
finish SSCP;                    /* END SUBROUTINE                                       
*/ 
S = J(p,p,0);                   /* Definition of a p x p square matrix with zeros       
*/ 
do i = 1 to K; 
if i = 1 then a = 1; 
else
a=1+(i-1)*nk_new[i-1]; 
b=a+nk_new[i]-1; 
x = Mkt_Data[a:b,2:4]; 
run SSCP;                       /* Execution of the SUBROUTINE for each group           
*/ 
S = S + SSCP;                   /* Accumulation of the sum of SSCP matrices             
*/ 
end;                            /* in order to calculate W (within-the-groups SSCP)     
*/ 
W = S; DetW = Det(W); 
print W "     " DetW; 
x=Mkt_Data[,2:4];               /* Definition of the data matrix (dropping the first 
column: CNTRYNO) */ 
run SSCP;                       /* Execution of the SUBROUTINE for total data           
*/ 
T=SSCP; 
DetT = Det(T); 
print T "     " DetT; 
Lmbd = Det(W) / Det(T);  
m = n_tot-1-(p+K) / 2;  
reset noname fw=5 nocenter; 
print "Lambda =" Lmbd [format=10.6]; 
print "m =" m [format=2.0] 

"  Use Bartlett's V for large m's and Rao's R otherwise " ; 
V = -m*Log(Lmbd); 
s = sqrt((p*p*(K-1)**2-4)/(p*p+(K-1)**2-5)); 
R = (1-Lmbd**(1/s))*(m*s-p*(K-1)/2 + 1)/(Lmbd**(1/s)*p*(K-1)); 
Df_num = p*(K-1);                       Df_den = m*s-Df_num/2 +1 ; 
Chi_crit = CINV(0.95,Df_num);   F_crit = finv(.95,df_num,df_den); 
print "Bartlett's V = " V [format=9.6] "   DF =" DF_num [format=2.0]  ; 
print "     Chi_crit =" Chi_crit [format=9.6]; 
print "Rao's R ="  R [format=9.6]   

"   DF_NUM =" Df_num [format=2.0]  
"   DF_DEN ="  Df_den [format=2.0] ;  

print "     F_crit =" F_crit [format=9.6];  
quit; 

Fig. 2.6 SAS input to perform a test of difference in mean vectors across K groups (examp2-2.sas)
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                Multivariate Significance Test: K-Sample Problem 
--------------------------------------------------

                         N_TOT              K             P 
                            21              3             3 

                         I            MEAN 
                         1       0.2001429 65.142857 1.5742857 

                         I            MEAN 
                         2       0.0402857        11 1.2257143 

                         I            MEAN 
                         3       0.0351429 7.5714286 1.4285714 

                         W                                DETW 
                 0.0044351 0.2002857 -0.002814        0.246783 
                 0.2002857 288.57143 1.8214286 
                 -0.002814 1.8214286 0.2144286 

                         I            MEAN 
                         4       0.0918571 27.904762 1.4095238 

                         T                                DETT 
                 0.1276486 42.601714 0.1808686       31.691145 
                 42.601714  14889.81 63.809048 
                 0.1808686 63.809048 0.6434952 

Lambda =   0.007787 

m = 17   Use Bartlett's V for large m's and Rao's R otherwise 

Bartlett's V =  82.539814    DF =  6 
     Chi_crit = 12.591587 

Rao's R = 55.104665    DF_NUM =  6    DF_DEN = 32 
     F_crit =  2.399080 

Fig. 2.7 SAS output of test of difference across K groups (examp2-2.lst)

/*  ****************** Examp2-3-Manovasas.sas *******************  */ 

OPTIONS LS=80; 
DATA work; 
INFILE 
""C:\SAMD2\CHAPTER2\EXAMPLES\Mkt_Dt_K.csv" 
dlm = ',' firstobs=2; 
INPUT CNTRYNO CNTRY $ PERIOD M_SHARE DIST PRICE; 

/* Chapter 2, IV.4 Significance Test: K-Sample Problem */ 
proc glm; 
 class CNTRY; 
 model M_SHARE DIST PRICE=CNTRY /nouni; 
 manova h = CNTRY/ printe; 
run; 

quit; 

Fig. 2.8 SAS input for MANOVA test of mean differences across K groups (examp2-3.sas)
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                               The GLM Procedure 

                            Class Level Information 

                    Class         Levels    Values 

                    CNTRY              3    BELG FRAN UKIN 

                    Number of Observations Read          21 
                    Number of Observations Used          21 

                       Multivariate Analysis of Variance 

                             E = Error SSCP Matrix 

                           M_SHARE              DIST             PRICE 

         M_SHARE      0.0044351429      0.2002857143      -0.002814286 
         DIST         0.2002857143      288.57142857      1.8214285714 
         PRICE        -0.002814286      1.8214285714      0.2144285714 

   Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r| 

              DF = 18        M_SHARE           DIST          PRICE 

              M_SHARE       1.000000       0.177039      -0.091258 
                                             0.4684         0.7102 

              DIST          0.177039       1.000000       0.231550 
                              0.4684                        0.3402 

              PRICE        -0.091258       0.231550       1.000000 
                              0.7102         0.3402 

           Characteristic Roots and Vectors of: E Inverse * H, where 
                       H = Type III SSCP Matrix for CNTRY 
                             E = Error SSCP Matrix 

   Characteristic               Characteristic Vector  V'EV=1 
           Root    Percent         M_SHARE            DIST           PRICE 

     67.2013787      98.70       7.5885004       0.0457830       0.0045113 
      0.8829099       1.30       3.7773797      -0.0204742       2.2231712 
      0.0000000       0.00     -12.8623871       0.0361429       0.2847771 

                 MANOVA Test Criteria and F Approximations for 
                   the Hypothesis of No Overall CNTRY Effect 
                       H = Type III SSCP Matrix for CNTRY 
                             E = Error SSCP Matrix 

                               S=2    M=0    N=7 

Statistic                    Value    F Value    Num DF    Den DF    Pr > F 

Wilks' Lambda           0.00778713      55.10         6        32    <.0001 
Pillai's Trace          1.45424468      15.10         6        34    <.0001 
Hotelling-Lawley Trace 68.08428858     176.86         6    19.652    <.0001 
Roy's Greatest Root    67.20137868     380.81         3        17    <.0001 

         NOTE: F Statistic for Roy's Greatest Root is an upper bound. 
                 NOTE: F Statistic for Wilks' Lambda is exact. 

Fig. 2.9 SAS output for MANOVA test of mean differences across K groups (examp2-3.lst)
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Fig. 2.10 Example of SAS file for reading data sets INDUP and PANEL and creating new data
files (assign2.sas)
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means are significant. In addition to the expression of Wilk’s lambda as a function
of the Eigenvalues of W–1B, three other measures are provided in the SAS output.

Pillai′s Trace is defined as
K∑

i=1

λi
1+λi

Hotelling–Lawley Trace is simply the sum of the Eigenvalues:
K∑

i=1
λi

Roy’s Greatest Root is the ratio λmax
1+λmax

These tests tend to be consistent, but the numbers are different. As noted in the
SAS output, Roy’s Greatest Root is an upper bound to the statistic.

2.6 Assignment

In order to practice with these analyses, you will need to use the databases INDUP
and PANEL described in Appendix C. These databases provide market share and
marketing mix variables for a number of brands competing in five market segments.
You can test the following hypotheses:

1. The market behavioral responses of a given brand (e.g., awareness, perceptions,
or purchase intentions) are different across segments,

2. The marketing strategy (i.e., the values of the marketing mix variables) of
selected brands is different (perhaps corresponding to different strategic groups).

Figure 2.10 shows how to read the data within a SAS file and how to create new
files with a subset of the data saved in a format, which can be read easily using the
examples provided throughout this chapter. Use the model described in the examples
above and adapt them to the database to perform these tests.

Fig. 2.10 (continued)
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