Contents

1 **Basic Statements** ... 1
 1.1 The Formulation of Boundary Value and Initial Boundary
 Value Problems in the Theory of Diffraction Gratings 1
 1.1.1 Fundamental Equations 1
 1.1.2 Domains of Analysis, Boundary and Initial Conditions ... 3
 1.1.3 Time Domain: Initial Boundary Value Problems 5
 1.1.4 Frequency Domain: Boundary Value Problems 11
 1.2 The General Physical Picture: Principal Definitions and
 Consequences from Conservation Laws and Reciprocity
 Theorems .. 15
 1.2.1 The Diffraction Problems for Plane Waves 15
 1.2.2 The Simplest Physical Consequences from the
 Poynting Theorem and the Lorentz Lemma 19
 1.3 The Spectral Theory of Gratings 22
 1.3.1 Introduction ... 22
 1.3.2 The Grating as an Open Periodic Resonator 24
 1.3.3 The Grating as an Open Periodic Waveguide 28
 1.3.4 Some Physical Results of Spectral Theory 33

2 **Analytic Regularization Methods** 43
 2.1 General Description and Classification of the Analytic
 Regularization Methods: History, Provenance, and Survey 43
 2.2 The Riemann–Hilbert Problem Method
 and Its Generalization 56
 2.2.1 Classical Dual Series Equations and
 the Riemann–Hilbert Problem 57
 2.2.2 Classical Dual Series Equations with “Matrix
 Perturbation” ... 63
 2.2.3 Dual Series Equations with the Nonunit
 Coefficient of Conjugation 73
 2.2.4 The System of Dual Series Equations and
 Riemann–Hilbert Vector Problem 80
2.3 Inversion of Convolution-Type Matrix Operators in System of Equations in the Mode Matching Technique 88
 2.3.1 Lamellar Gratings: Systems of First-Kind Equations and Analytic Regularization of the Problem ... 90
 2.3.2 Matrix Scheme of Analytic Regularization Procedure ... 96
2.4 Electromagnetic Wave Diffraction by Gratings in Presence of a Chiral Isotropic Medium 102
 2.4.1 Field Presentation in Chiral Medium 104
 2.4.2 Formulation of the Problem 106
 2.4.3 The Systems of Dual Series Equations 107
 2.4.4 An Algebraic System of the Second Kind 110
 2.4.5 Numerical Analysis for Grating and Chiral Half-Space ... 115
 2.4.6 Strip Grating with Layered Medium 120
 2.4.7 Electromagnetic Properties of a Strip Grating with Layered Medium in the Resonant Frequency Range ... 122
2.5 Resonant Scattering of Electromagnetic Waves by Gratings and Interfaces Between Anisotropic Media and Metamaterials ... 130
 2.5.1 Resonant Wave Scattering by a Strip Grating Loaded with a Metamaterial Layer 131
 2.5.2 The Plane-Wave Diffraction from a Strip Grating with Anisotropic Medium 145
2.6 Diffraction of Quasi-Periodic Waves by Obstacles with Cylindrical Periodical Wavy Surfaces 155
 2.6.1 The Dirichlet Diffraction Problem 158
 2.6.2 Reduction of the Dirichlet BVP to the Integral Equations ... 158
 2.6.3 Investigation of the Differential Properties of the Integral Equation Kernel 161
 2.6.4 Additive Splitting of the Integral Equation Kernel into a Sum of Main Singular Part and Some More Smooth Function ... 164
 2.6.5 Reduction of the Integral Equation to an Infinite System of Linear Algebraic Equations of the First Kind ... 165
 2.6.6 Construction of an Infinite System of Linear Algebraic Equations of the Second Kind 167
 2.6.7 The Neumann Diffraction Problem 167
3 C-Method: From the Beginnings to Recent Advances 173
 3.1 Introduction ... 173
 3.2 Classical C-Method 174
 3.2.1 Modal Equations in Cartesian Coordinates and Quasi-periodic Green Function 175
 3.2.2 New Coordinate System 177
 3.2.3 Modal Equation in the Translation Coordinate System 178
 3.3 Diffraction of a Plane Wave by a Modulated Surface Grating 180
3.3.1 Formulation of the Problem .. 180
3.3.2 Tangential Component of a Vector Field at a
Coordinate Surface .. 182
3.3.3 Boundary Conditions .. 183
3.4 Adaptive Spatial Resolution .. 184
 3.4.1 Trapezoidal Grating ... 185
 3.4.2 Lamellar Grating and Adaptive Spatial Resolution 188
3.5 Curved Strip Gratings .. 192
3.6 Several Issues of Spectral Theory Relevant to C-Method
 Formalism ... 198
 3.6.1 The Diffraction Problem Formulation for
 Real-Valued Frequencies ... 199
 3.6.2 Diffraction Problem for Complex-Valued Frequencies .. 201
 3.6.3 Spectral Problem and Its Solution: Some Physical
 Results ... 204

4 Modeling and Analysis of Transients in Periodic Structures:
 Fully Absorbing Boundaries for 2-D Open Problems 211
 4.1 Infinite Gratings: Exact Absorbing Conditions for Plane
 Parallel Floquet Channel .. 212
 4.1.1 Transformation of Evolutionary Basis of a Signal
 in a Regular Floquet Channel 213
 4.1.2 Nonlocal Absorbing Conditions 216
 4.1.3 Local Absorbing Conditions 219
 4.1.4 The Problems of Large and Remote Field Sources 224
 4.2 Finite Gratings: Exact Conditions for Rectangular
 Artificial Boundaries .. 227
 4.2.1 Statement of the Problems 227
 4.2.2 Truncation of the Analysis Domain to a Band 230
 4.2.3 The Corner Points: Proper Formulation of the
 Inner Initial Boundary Value Problems in the
 Exact Local Absorbing Conditions 232
 4.2.4 The Far Zone Problem: Radiation Conditions
 for Outgoing Cylindrical Waves and Exact
 Conditions for Artificial Boundaries in Polar Coordinates 236
 4.3 Time Domain Methods in the Study of Gratings and
 Compact Grating Structures as Open Resonators 239
 4.3.1 Spatial–Frequency Representations of Transient
 Fields and Preliminary Qualitative Analysis 239
 4.3.2 A Choice of the Field Sources in Numerical Experiments 246
 4.3.3 Compact Grating Structures 250
 4.4 Infinite Gratings: Resonant Wave Scattering 258
 4.4.1 Electrodynamical Characteristics of Gratings 259
 4.4.2 Semitransparent Gratings 262
 4.4.3 Reflective Gratings .. 269
4.4.4 Gratings in a Pulsed Wave Field 277

4.5 2-D Models of Compact Grating Structures:
 Spatio-frequency and Spatio-temporal Field Transformations . . 285
4.5.1 Basic Definitions and Numerical Tests of New
 Exact Conditions 285
4.5.2 Finite and Infinite Periodic Structures:
 Similarities and Differences 291
4.5.3 Radiating Apertures with Quasi-periodic Field
 Structure ... 296
4.5.4 Resonant Antennas with Semitransparent Grating
 Mirrors ... 305
4.5.5 2-D Models of Phased Arrays 317

5 Finite Scale Homogenization of Periodic Biaxotropic Structures . 335
5.1 Fundamental Ideas 336
5.2 Some Mathematical Properties of Maxwell’s Operator 338
 5.2.1 Vacuum Case 340
 5.2.2 Material Case 341
 5.2.3 Lossless Media: Eigenvalue Decomposition 342
 5.2.4 Dispersive Media: Singular Value Decomposition ... 344
5.3 Estimates of the Eigenvalues and Singular Values in the
 Low-Frequency Limit 345
5.4 Reduced Number of Degrees of Freedom in the
 Low-Frequency Limit 349
5.5 Computation of Homogenized Parameters 353
 5.5.1 Lossless Case 354
 5.5.2 Dispersive Case 355
5.6 Results for Sample Structures 356
 5.6.1 Laminated Media 356
 5.6.2 Validity of Classical Homogenization 358
 5.6.3 Results for a Chiral Structure 361
5.7 Conclusions ... 365

Appendix: The List of the Symbols and Abbreviations 367

References ... 371

Index .. 383
Modern Theory of Gratings
Resonant Scattering: Analysis Techniques and Phenomena
Sirenko, Y.K.; Ström, S. (Eds.)
2010, XVI, 390 p. 120 illus., 43 illus. in color., Hardcover