Contents

1 Introduction ... 1
1.1 Hardware Platforms Considered in This Research Monograph 3
1.2 EDA Algorithms Studied in This Research Monograph 3
1.2.1 Control-Dominated Applications 4
1.2.2 Control Plus Data Parallel Applications 4
1.3 Automated Approach for GPU-Based Software Acceleration 4
1.4 Chapter Summary .. 4
References ... 5

Part I Alternative Hardware Platforms

2 Hardware Platforms .. 9
2.1 Chapter Overview .. 9
2.2 Introduction ... 9
2.3 Hardware Platforms Studied in This Research Monograph 10
2.3.1 Custom ICs ... 10
2.3.2 FPGAs .. 10
2.3.3 Graphics Processors 10
2.4 General Overview and Architecture 11
2.5 Programming Model and Environment 14
2.6 Scalability .. 15
2.7 Design Turn-Around Time 16
2.8 Performance .. 16
2.9 Cost of Hardware ... 18
2.10 Floating Point Operations 18
2.11 Security and Real-Time Applications 19
2.12 Applications .. 19
2.13 Chapter Summary .. 20
References ... 20
3 GPU Architecture and the CUDA Programming Model 23
 3.1 Chapter Overview ... 23
 3.2 Introduction .. 23
 3.3 Hardware Model ... 24
 3.4 Memory Model .. 25
 3.5 Programming Model .. 28
 3.6 Chapter Summary .. 30
References .. 30

Part II Control-Dominated Category

4 Accelerating Boolean Satisfiability on a Custom IC 33
 4.1 Chapter Overview ... 33
 4.2 Introduction .. 34
 4.3 Previous Work .. 36
 4.4 Hardware Architecture 37
 4.4.1 Abstract Overview 37
 4.4.2 Hardware Overview 38
 4.4.3 Hardware Details 39
 4.5 An Example of Conflict Clause Generation 50
 4.6 Partitioning the CNF Instance 51
 4.7 Extraction of the Unsatisfiable Core 53
 4.8 Experimental Results .. 54
 4.9 Chapter Summary ... 59
References .. 59

5 Accelerating Boolean Satisfiability on an FPGA 63
 5.1 Chapter Overview ... 63
 5.2 Introduction .. 64
 5.3 Previous Work .. 64
 5.4 Hardware Architecture 66
 5.4.1 Architecture Overview 66
 5.5 Solving a CNF Instance Which Is Partitioned into Several Bins ... 67
 5.6 Partitioning the CNF Instance 69
 5.7 Hardware Details ... 70
 5.8 Experimental Results .. 72
 5.8.1 Current Implementation 72
 5.8.2 Performance Model 73
 5.8.3 Projections ... 77
 5.9 Chapter Summary ... 80
References .. 80
6 Accelerating Boolean Satisfiability on a Graphics Processing Unit . . . 83
 6.1 Chapter Overview ... 83
 6.2 Introduction .. 83
 6.3 Related Previous Work .. 85
 6.4 Our Approach ... 87
 6.4.1 SurveySAT and the GPU 87
 6.4.2 MiniSAT Enhanced with Survey Propagation (MESP) . . . 93
 6.5 Experimental Results .. 96
 6.6 Chapter Summary .. 98
References ... 98

Part III Control Plus Data Parallel Applications

7 Accelerating Statistical Static Timing Analysis Using Graphics Processors . 105
 7.1 Chapter Overview ... 105
 7.2 Introduction ... 106
 7.3 Previous Work ... 108
 7.4 Our Approach ... 109
 7.4.1 Static Timing Analysis (STA) at a Gate 109
 7.4.2 Statistical Static Timing Analysis (SSTA) at a Gate . . 112
 7.5 Experimental Results .. 113
 7.6 Chapter Summary .. 116
References ... 116

8 Accelerating Fault Simulation Using Graphics Processors 119
 8.1 Chapter Overview .. 119
 8.2 Introduction ... 119
 8.3 Previous Work ... 121
 8.4 Our Approach ... 122
 8.4.1 Logic Simulation at a Gate 123
 8.4.2 Fault Injection at a Gate 125
 8.4.3 Fault Detection at a Gate 126
 8.4.4 Fault Simulation of a Circuit 127
 8.5 Experimental Results .. 129
 8.6 Chapter Summary .. 131
References ... 131

9 Fault Table Generation Using Graphics Processors 133
 9.1 Chapter Overview .. 133
 9.2 Introduction ... 134
 9.3 Previous Work ... 136
 9.4 Our Approach ... 136
10 Accelerating Circuit Simulation Using Graphics Processors 153
10.1 Chapter Overview ... 153
10.2 Introduction ... 153
10.3 Previous Work ... 155
10.4 Our Approach .. 157
 10.4.1 Parallelizing BSIM3 Model Computations on a GPU 158
10.5 Experiments ... 162
10.6 Chapter Summary .. 165
References ... 165

Part IV Automated Generation of GPU Code

11 Automated Approach for Graphics Processor Based Software Acceleration ... 169
11.1 Chapter Overview .. 169
11.2 Introduction ... 169
11.3 Our Approach ... 171
 11.3.1 Problem Definition .. 171
 11.3.2 GPU Constraints on the Kernel Generation Engine ... 172
 11.3.3 Automatic Kernel Generation Engine ... 173
11.4 Experimental Results ... 176
 11.4.1 Evaluation Methodology .. 177
11.5 Chapter Summary .. 179
References ... 179

12 Conclusions .. 181
References ... 187

Index .. 189
Hardware Acceleration of EDA Algorithms
Custom ICs, FPGAs and GPUs
Khatri, S.P.; Gulati, K.
2010, XXII, 192 p., Hardcover