Contents

1 Introduction: ICTMA and the Teaching of Modeling and Applications 1
 Gabrielle Kaiser

Part I The Nature of Models & Modeling

 Richard Lesh and Thomas Fennweld

Section 1 What Are Models?

3 Modeling Theory for Math and Science Education .. 13
 David Hestenes

4 Modeling a Crucial Aspect of Students’ Mathematical Modeling 43
 Mogens Niss

5 Modeling Perspectives in Math Education Research ... 61
 Christine Larson, Guershon Harel, Michael Oehrtman, Michelle Zandieh, Chris Rasmussen, Robert Speiser, and Chuck Walter

Section 2 Where Are Models & Modelers Found?

6 Modeling to Address Techno-Mathematical Literacies in Work 75
 Richard Noss and Celia Hoyles

7 Mathematical Modeling in Engineering Design Projects ... 87
 Monica E. Cardella

8 The Mathematical Expertise of Mechanical Engineers – The Case of Mechanism Design .. 99
 Burkhard Alpers
Section 3 What Do Modeling Processes Look Like?

9 **Modeling and Quantitative Reasoning: The Summer Jobs Problem** .. 111
 Christine Larson

10 **Tracing Students’ Modeling Processes in School** ... 119
 Nicholas Mousoulides, M. Pittalis, C. Christou, and Bharath Sriraman

Section 4 What Creates “The Need For Modeling”

11 **Turning Ideas into Modeling Problems** ... 133
 Peter L. Galbraith, Gloria Stillman, and Jill Brown

12 **Remarks on a Modeling Cycle and Interpreting Behaviours** 145
 Christopher R. Haines and Rosalind Crouch

13 **Model Eliciting Environments as “Nurseries” for Modeling Probabilistic Situations** ... 155
 Miriam Amit and Irma Jan

14 **Models as Tools, Especially for Making Sense of Problems** 167
 Bob Speiser and Chuck Walter

15 **In-Depth Use of Modeling in Engineering Coursework to Enhance Problem Solving** .. 173
 Renee M. Clark, Larry J. Shuman, and Mary Besterfield-Sacre

16 **Generative Activities: Making Sense of 1098 Functions** 189
 Sarah M. Davis

Section 5 How Do Models Develop?

17 **Modeling the Sensorial Perception in the Classroom** ... 201
 Adolf J.I. Riede

18 **Assessing a Modeling Process of a Linear Pattern Task** 213
 Miriam Amit and Dorit Neria

19 **Single Solution, Multiple Perspectives** .. 223
 Angeles Dominguez

Section 6 How is Modeling Different than Solving?

20 **Problem Solving Versus Modeling** ... 237
 Judith Zawojewski

21 **Investigating the Relationship Between the Problem and the Solver: Who Decides What Math Gets Used?** .. 245
 Guadalupe Carmona and Steven Greenstein
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Communication: The Essential Difference Between Mathematical Modeling and Problem Solving</td>
<td>Tomas Højgaard</td>
<td>255</td>
</tr>
<tr>
<td>23</td>
<td>Analysis of Modeling Problem Solutions with Methods of Problem Solving</td>
<td>Gilbert Greefrath</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Part II Modeling in School Classrooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Modeling in K-16 Mathematics Classrooms – and Beyond</td>
<td>Richard Lesh, Randall Young, and Thomas Fennewald</td>
<td>275</td>
</tr>
<tr>
<td>25</td>
<td>Section 7 How Can Students Recognize the Need for Modeling?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Modeling with Complex Data in the Primary School</td>
<td>Lyn D. English</td>
<td>287</td>
</tr>
<tr>
<td>27</td>
<td>Two Cases Studies of Fifth Grade Students Reasoning About Levers</td>
<td>Paula Guerra, Linda Hernández, Ahyoung Kim, Muhsin Menekse, and James Middleton</td>
<td>301</td>
</tr>
<tr>
<td>28</td>
<td>Don’t Disrespect Me: Affect in an Urban Math Class</td>
<td>Roberta Y. Schorr, Yakov M. Epstein, Lisa B. Warner, and Cecilia C. Arias</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Section 8 How Do Classroom Modeling Communities Develop?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Interdisciplinary Modeling Instruction: Helping Fifth Graders Learn About Levers</td>
<td>Brandon Helding, Colleen Megowan-Romanowicz, Tirupalavanam Ganesh, and Shirley Fang</td>
<td>327</td>
</tr>
<tr>
<td>30</td>
<td>Modeling Discourse in Secondary Science and Mathematics Classrooms</td>
<td>M. Colleen Megowan-Romanowicz</td>
<td>341</td>
</tr>
<tr>
<td>31</td>
<td>A Middle Grade Teacher’s Guide to Model Eliciting Activities</td>
<td>Della R. Leavitt and Cynthia M. Ahn</td>
<td>353</td>
</tr>
<tr>
<td>32</td>
<td>The Students’ Discussions in the Modeling Environment</td>
<td>Joneia Cerqueira Barbosa</td>
<td>365</td>
</tr>
<tr>
<td>33</td>
<td>The Social Organization of a Middle School Mathematics Group Discussion</td>
<td>William Zahner and Judit Moschkovich</td>
<td>373</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Identifying Challenges within Transition Phases of Mathematical Modeling Activities at Year 9</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gloria Stillman, Jill Brown, and Peter Galbraith</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Realistic Mathematical Modeling and Problem Posing</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cinzia Bonotto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Modeling in Class and the Development of Beliefs about the Usefulness of Mathematics</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Katja Maass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 9 How Do Teachers Develop Models of Modeling?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Insights into Teachers’ Unconscious Behaviour in Modeling Contexts</td>
<td>423</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rita Borromeo Ferri and Werner Blum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Future Teachers’ Professional Knowledge on Modeling</td>
<td>433</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabriele Kaiser, Björn Schwarz, and Silke Tiedemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Theory Meets Practice: Working Pragmatically Within Different Cultures and Traditions</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fco. Javier García, Katja Maass, and Geoff Wake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Secondary Teachers Learn and Refine Their Knowledge During Modeling Activities in a Learning Community Environment</td>
<td>459</td>
<td></td>
</tr>
<tr>
<td></td>
<td>César Cristóbal Escalante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>An Investigation of Teachers’ Shared Interpretations of Their Roles in Supporting and Enhancing Group Functioning</td>
<td>471</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betsy Berry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Mathematical Modeling: Implications for Teaching</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maria Salett Biembengut and Nelson Hein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>A Professional Development Course with an Introduction of Models and Modeling in Science</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genaro Zavala, Hugo Alarcon, and Julio Benegas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Modeling as Isomorphism: The Case of Teacher Education</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sergei Abramovich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Mathematical Modeling and the Teachers’ Tensions</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andréia Maria Pereira de Oliveira and Jonei Cerqueira Barbosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>A Case Study of Two Teachers: Teacher Questions and Student Explanations</td>
<td>519</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lisa B. Warner, Roberta Y. Schorr, Cecilia C. Arias, and Lina Sanchez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 10</td>
<td>How Do New Technologies Influence Modeling in School?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Modeling Practices with The Geometer’s Sketchpad</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nathalie Sinclair and Nicholas Jackiw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>A Principal Components Model of Simcalc Mathworlds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theodore Chao, Susan B. Empson, and Nicole Shechtman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Modeling Random Binomial Rabbit Hops</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sibel Kazak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Investigating Mathematical Search Behavior Using</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Network Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thomas Hills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Mathematical Modeling and Virtual Environments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stephen R. Campbell</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 11</th>
<th>What is The History of Modeling in Schools?</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>On the Use of Realistic Fermi Problems in Introducing Mathematical Modelling in Upper Secondary Mathematics</td>
</tr>
<tr>
<td></td>
<td>Jonas Bergman Årlebäck and Christer Bergsten</td>
</tr>
<tr>
<td>53</td>
<td>The Dutch Maths Curriculum: 25 Years of Modelling</td>
</tr>
<tr>
<td></td>
<td>Pauline Vos</td>
</tr>
</tbody>
</table>

References: 621
Index: 649
Modeling Students' Mathematical Modeling Competencies
ICTMA 13
2010, XIV, 650 p., Hardcover
ISBN: 978-1-4419-0560-4