Contents

1 Fish Oil and Importance of Its Ingredients in Human Diet 1
 1.1 Introduction ... 1
 1.2 n–3 Fatty Acids in Fish Oil Capsules and Krill Oil Capliques .. 3
 1.2.1 Availability of Purified Fish Oil and Krill Oil Preparations .. 4
 1.2.2 Other n–3-Enriched Manufactured Products 8
 1.3 Effects of Fish Oil on Human Health 8
 1.4 Effects of Fish Oil on Heart 9
 1.4.1 Antiinflammatory and Antiatherosclerotic Effects of Fish Oil .. 10
 1.4.2 Antiarrythmic Effects of Fish Oil 11
 1.4.3 Antithrombotic Effects of Fish Oil 13
 1.4.4 Effect of n–3 Fatty Acids on Revascularization ... 14
 1.4.5 n–3 or ω–3 Index and Heart Disease 15
 1.5 Effects of Fish Oil on Brain 16
 1.5.1 Effect of Fish Oil on Neural Membranes 16
 1.5.2 Effect of Fish Oil on Neuritogenesis 17
 1.5.3 Effect of n–3 Fatty Acids on Ion Channels 17
 1.5.4 Effect of n–3 Fatty Acids on Receptors 18
 1.6 Effects of Fish Oil on Lungs 18
 1.7 Effects of Fish Oil on Kidneys 19
 1.8 Effects of Fish Oil on Plasma Lipids 20
 1.9 Effect of Fish Oil on Liver 22
 1.10 n–3 Fatty Acids and Bleeding Tendency 24
 1.11 Effect of n–3 Fatty Acids on Blood Pressure 24
 1.12 Recommendations for Intake of n–3 Fatty Acids 25
 1.13 Beneficial Effects of Olive Oil on Human Health 25
 1.13.1 Effects of Olive Oil on Heart 25
 1.13.2 Effects of Olive Oil on Brain 29
 1.14 Harmful Effects of Trans Fatty Acids on Human Health 31
 1.15 Conclusion .. 34
References ... 35
2 Transport, Synthesis, and Incorporation of n–3 and n–6 Fatty Acids in Brain Glycerophospholipids ... 47
 2.1 Introduction .. 47
 2.2 Transport of Dietary ARA and DHA to Brain 48
 2.3 Importance of DHA in Neural Membranes 51
 2.4 ARA and Its Importance in Neural Membranes 53
 2.5 Biosynthesis of n–3 and n–6 Fatty Acids in Liver 54
 2.5.1 Biosynthesis of n–3 Fatty Acids in Liver 55
 2.5.2 Biosynthesis of n–6 Fatty Acids in Liver 58
 2.6 Incorporation of Fatty Acids in Glycerophospholipids 60
 2.6.1 Acyl-CoA Synthetases in Brain 61
 2.6.2 Acyl-CoA:lysophospholipid Acyltransferase in Brain ... 64
 2.6.3 CoA-Independent Reacylation in Brain 67
 2.7 Incorporation of ALA and LA in Brain Lipids 67
 2.8 Incorporation of Docosahexaenoic Acid in Neural Membranes in Glycerophospholipids ... 68
 2.9 Incorporation of Arachidonic Acid in Neural Membranes . 70
 2.10 Conclusion .. 70
 References .. 71

3 Release of n–3 and n–6 Fatty Acids from Glycerophospholipids in Brain ... 79
 3.1 Introduction .. 79
 3.2 Release of DHA from Ethanolamine or Choline
 Plasmalogen .. 80
 3.2.1 Plasmalogen-Selective-Phospholipase A$_2$ in Brain 81
 3.2.2 Canine Myocardium PlsCho-PLA$_2$ 88
 3.2.3 PlsEtn-PLA$_2$ from Rabbit Kidney 89
 3.3 Release of DHA from PtdSer .. 91
 3.4 Receptor-Mediated Degradation of Plasmalogens 91
 3.5 Release of n–6 Fatty Acids from Neural Membrane
 Glycerophospholipids .. 92
 3.5.1 cPLA$_2$ in Brain .. 92
 3.5.2 Other Phospholipases A$_2$ 96
 3.6 Regulation of PLA$_2$ Activity in Brain 96
 3.6.1 Regulation of PlsEtn-PLA$_2$ 96
 3.6.2 Regulation of cPLA$_2$ 97
 3.7 Conclusion .. 98
 References .. 99

4 Oxidation of Arachidonic and Docosahexaenoic Acids and Neurochemical Effects of Their Metabolites on Brain 105
 4.1 Introduction ... 105
 4.2 Arachidonic Acid and Its Enzymic Oxidation in Brain 108
4.2.1 Isoforms of Cyclooxygenases in Brain 108
4.2.2 Roles of Eicosanoids in Brain 110
4.2.3 Isoforms of Lipoxygenases in Brain 112
4.2.4 Roles of Lipoxins in Brain 113
4.2.5 Isoforms of Cytochrome P450 Epoxigenases in Brain 116
4.2.6 cis-Epoxyeicosatrienoic Acids 118

4.3 Non-enzymic Oxidation of Arachidonic Acid 119
4.3.1 4-Hydroxynonenal, Acrolein, and Malondialdehyde 119
4.3.2 Isoprostanones ... 124
4.3.3 Isoketals .. 126
4.3.4 Isofurans .. 128

4.4 Enzymic and Non-enzymic Oxidation of DHA 128
4.4.1 Enzymic Oxidation of DHA 129
4.4.2 17S D Series Resolvins 130
4.4.3 Docosatrienes .. 131

4.5 Non-enzymic Oxidation of Docosahexaenoic Acid 133
4.5.1 4-Hydroxyhexenal ... 133
4.5.2 Neuroprostanones .. 134
4.5.3 Neuroketals ... 135
4.5.4 Neurofurans ... 136

4.6 Enzymic Oxidation of EPA in Brain 136
4.7 Non-enzymic Oxidation of EPA 138
4.8 Conclusion .. 140

References ... 140

5 Roles of Docosahexaenoic and Eicosapentaenoic Acids in Brain ... 151
5.1 Introduction .. 151
5.2 Comparison of Biochemical Activities of DHA and EPA 152
5.3 Role of DHA in Brain Tissue 156
5.3.1 DHA-Mediated Modulation of Physicochemical Properties of Membranes 156
5.3.2 DHA-Mediated Modulation of Neurotransmission 157
5.3.3 DHA-Mediated Modulation of Gene Expression 158
5.3.4 DHA-Mediated Modulation of Enzymic Activities 159
5.3.5 DHA-Mediated Modulation of Inflammation and Immunity ... 161
5.3.6 DHA-Mediated Modulation of Learning and Memory 163
5.3.7 DHA-Mediated Modulation of Apoptosis 164
5.3.8 DHA and Generation of Docosanoids 166
5.3.9 DHA-Mediated Generation of Neurite Outgrowth 166
5.3.10 DHA-Mediated Modulation of Visual Function 168
5.3.11 DHA-Mediated Modulation of Nociception (Pain) 168
5.3.12 DHA, Plasma Membrane Targeting, and Raft Formation 169
5.4 Roles of EPA in Brain 170
5.4.1 EPA-Mediated Modulation of Inflammation and Immunity 171
5.4.2 EPA-Mediated Modulation of Depression 172
5.4.3 EPA-Mediated Modulation of Gene Expression 173
5.4.4 EPA-Mediated Modulation of Enzymic Activities 174
5.4.5 EPA and Generation of Resolvin E 174
5.4.6 EPA-Mediated Modulation of Lipid Rafts 176
5.4.7 Other Roles of EPA 176
5.5 Conclusion 177

References 177

6 Status of Docosahexaenoic Acid Levels in Aging and Consequences of Docosahexaenoic Acid Deficiency in Normal Brain 189
6.1 Introduction 189
6.2 DHA and ARA Entry and Metabolism in Developing Brain 191
6.3 Alterations in DHA Levels in Various Regions During Aging 193
6.4 DHA in Plasmalogens and Phosphatidylserine 194
6.4.1 DHA in Plasmalogens 196
6.4.2 DHA in Phosphatidylserine 197
6.5 Consequences of DHA Deficiency in Brain 199
6.5.1 Effects of DHA Deficiency on Behavioral Parameters 201
6.5.2 Effects of DHA Deficiency on Glucose Utilization 201
6.5.3 Effects of DHA Deficiency on Lipid Metabolism 202
6.5.4 Effects of DHA Deficiency on Receptor Function 203
6.5.5 Effects of DHA Deficiency on Protein Function and Enzyme Activities 205
6.5.6 Effects of DHA Deficiency on Growth Factors 206
6.5.7 Effects of DHA Deficiency on Ion Channels Permeability 207
6.5.8 Effects of DHA Deficiency on Blood Pressure 208
6.6 Conclusion 208

References 209

7 Status and Potential Therapeutic Importance of \(n-3 \) Fatty Acids in Neurodegenerative Disease 217
7.1 Introduction 217
7.2 Apoptotic Cell Death in Neurodegenerative Diseases 222
7.3 Factors Influencing the Onset of Neurodegenerative Diseases
7.3.1 Genetic and Environmental Factors
7.3.2 Lifestyle and Neurodegenerative Diseases
7.3.3 Diet and Neurodegenerative Diseases
7.4 Importance of n–3 Fatty Acid in Diet
7.4.1 Docosahexaenoic Acid in Alzheimer Disease
7.4.2 Docosahexaenoic Acid in Parkinson Disease
7.4.3 Docosahexaenoic Acid in Amyotrophic Lateral Sclerosis
7.4.4 Docosahexaenoic Acid in Huntington Disease
7.5 Interactions Among Excitotoxicity, Oxidative Stress, and Neuroinflammation in Neurodegenerative Diseases
7.6 Conclusion
References

8 Status and Potential Therapeutic Importance of n–3 Fatty Acids in Acute Metabolic Trauma and Neurotraumatic Disorders
8.1 Introduction
8.2 Similarities and Differences Between Ischemic and Traumatic Neural Injuries
8.3 Glycerophospholipids and Fatty Acids Alterations in Ischemic Injury
8.4 Effect of n–3 Fatty Acids on Ischemic Injury
8.5 Glycerophospholipids, Fatty Acid, BDNF, and cAMP in Spinal Cord Injury
8.6 Effect of n–3 Fatty Acids on Spinal Cord Injury
8.7 Glycerophospholipid and Fatty Acids Alterations in Traumatic Brain Injury
8.8 Effect of n–3 Fatty Acids on Traumatic Brain Injury
8.9 Glycerophospholipid and Fatty Acid Alterations in Epilepsy
8.10 Effect of n–3 Fatty Acids on Epilepsy
8.11 Glycerophospholipids and Fatty Acids in Kainic Acid-Induced Neural Cell Injury
8.12 Effect of n–3 Fatty Acids in Kainic Acid-Induced Neural Cell Injury
8.13 Interactions Among Excitotoxicity, Oxidative Stress, and Neuroinflammation Following Acute Neural Trauma
8.14 Conclusion
References
10.4 Treatment of Peroxisomal Disorders with DHA

10.4.1 DHA and Adrenomyeloneuropathy 339
10.4.2 DHA, Retinitis Pigmentosa, and Retinopathy 339

10.5 DHA and Prion Diseases .. 340

10.6 DHA and Multiple Sclerosis 342

10.7 DHA and Non-neural Diseases 343

10.7.1 DHA and Chronic Obstructive Pulmonary Disease 344
10.7.2 DHA and Crohn’s Disease .. 346
10.7.3 DHA and Systemic Lupus Erythematosus 347
10.7.4 DHA and Cystic Fibrosis .. 348
10.7.5 DHA and Arthritis ... 351
10.7.6 DHA and Osteoporosis ... 354
10.7.7 DHA and Psoriasis ... 355
10.7.8 DHA and Its Clinical Trials in Chronic Diseases 356

10.8 Conclusion .. 357

References ... 358

11 Perspective and Directions for Future Development on the Effects of Fish Oil Constituents on Brain

11.1 Introduction .. 367

11.2 Chronic Diseases and Dietary n-6/n-3 Ratio 368

11.3 Expression of Genes in Animals and Plants to Improve n-6 to n-3 Fatty Acids Ratio ... 371

11.4 Unsolved Problems of DHA and ARA Metabolism 373

11.4.1 Characterization of Enzymes Associated with DHA and ARA Metabolism .. 374

11.4.2 Development of Antisense Oligonucleotides and RNAi 374

11.4.3 Characterization of Receptors for Neuroprotectins and Resolvins .. 375

11.5 Nutrigenomics/Nutrigenetics/Transcriptomics Approaches to n-3 Fatty Acids ... 376

11.6 Conclusion ... 379

References ... 380

Index ... 385
Beneficial Effects of Fish Oil on Human Brain
Farooqui, A.A.
2009, XXI, 396 p., Hardcover
ISBN: 978-1-4419-0542-0