Pediatric Dermatology

Contents

2.1 Neonatal Dermatology ................................................................. 28
2.2 Childhood Infectious Diseases .................................................. 32
2.3 Papulosquamous and Eczematous Dermatoses ......................... 36
2.4 Pigmented Lesions ...................................................................... 38
2.5 Bullous Diseases ........................................................................ 41
2.6 Epidermal, Appendageal, and Dermal Tumors ............................. 43
2.7 Tumors of Fat, Muscle and Bone ............................................... 47
2.8 Vascular Disorders ..................................................................... 48
2.9 Genodermatoses ....................................................................... 52
2.1 NEONATAL DERMATOLOGY

Transient Neonatal Pustular Melanosis (Figure 2.1A)
- Onset at birth; common in darkly pigmented infants
- Presents with small pustules or residual hyperpigmented macules with collarette of scale
- Smear of sterile pustule shows numerous neutrophils
- Histology: subcorneal pustules with neutrophils

Erythema Toxicum Neonatorum
- Onset typically 24–48 h after birth; occurs in half of all full-term infants
- Presents with blotchy erythematos macules, papules, pustules, and wheals
- Smear of sterile vesicle/pustule shows eosinophils
- Histology: subcorneal pustules with eosinophils, associated with pilosebaceous unit

Neonatal Cephalic Pustulosis (Neonatal Acne) (Figure 2.1B)
- Onset typically within first 30 days; Malassezia spp. implicated in pathogenesis
- Presents with erythematous follicular comedones, papules, and pustules on face
- Histology: follicular pustules with neutrophils

Sclerema Neonatorum
- Onset usually within first week of life; form of panniculitis in severely ill, premature infants; often fatal
- Presents with diffuse woody hardening of skin; spares genitalia, palms, and soles
- Histology: needle-shaped clefts with necrotic adipocytes with little surrounding inflammation

Subcutaneous Fat Necrosis of the Newborn (Figure 2.1C)
- Onset within first weeks of life; localized form of sclerema neonatorum in healthy infants
- Presents with indurated subcutaneous nodules favoring cheeks, shoulders, back, buttocks, and thighs
- Associated with hypothermia, perinatal hypoxemia (from preeclampsia, meconium aspiration, etc.), hypoglycemia
- Calcification may occur; profound hypercalcemia with resolution, so prudent to monitor calcium levels until 1 month after full resolution of lesions
- Histology: panniculitis with prominent inflammatory infiltrate, needle-shaped clefts and fat necrosis

Pedal Papules of Infancy
- Soft, non-painful papules involving heels
**Seborrheic Dermatitis** (Figure 2.2A)
- Onset typically 1 week after birth; lasts several months, mostly resolves by 1 year of age
- Presents with ill-defined erythematous patches with waxy scale over scalp ("cradle cap"), ± axillae and groin; lesions may appear psoriasiform

**Miliaria Crystallina (MC) or Miliaria Rubra (MR)**
- Onset within first few weeks of life; due to obstructed sweat glands and associated with ↑ temperature (i.e., occlusion)
- Presents with clear vesicles favoring head, neck, and upper trunk (MC) or erythematous papules/vesicles grouped in intertriginous areas or occluded areas (MR)

**Aplasia Cutis Congenita (ACC)** (Figure 2.2B, C)
- Onset before birth; localized defect in epidermis, dermis and/or fat; variable appearance, typically along midline
- Presents with erosion, ulceration, scar, or membranous defect (ovoid lesion covered by an epithelial membrane)
- **Hair collar sign**: ring of dark long hair encircling lesion; ± marker of underlying neural tube defect
- Typically isolated abnormality, but may be associated with developmental anomalies or following disorders:

<table>
<thead>
<tr>
<th>Bart Syndrome</th>
<th>ACC of lower extremities + epidermolysis bullosa (dominant dystrophic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams–Oliver Syndrome</td>
<td>ACC on scalp (with skull ossification defect) + extensive CMTC + limb defects (reductions, syndactyly) + cardiac abnormalities</td>
</tr>
<tr>
<td>Seitles Syndrome</td>
<td>Bilateral temporal ACC + abnormal eyelashes, &quot;leonine&quot; facies, upward-slanting eyebrows</td>
</tr>
</tbody>
</table>

**Cutis Marmorata Telangiectatica Congenita (CMTC)**
- Onset at birth; typically improves with age
- Presents with blanching reticulated vascular pattern on trunk/extremities with segmental distribution
- Associated anomalies in ½ of patients (varicosities, nevus flammeus, macrocephaly, ulceration, hypoplasia, and/or hypertrophy of soft tissue and bone)

**Sucking Blister**
- Onset at birth or soon after; due to sucking
- Presents with solitary blister (hand, wrist, or lip)

Congenital Infections of the Newborn (see Table 2-1)
Differential Diagnosis of ‘Diaper Dermatitis’ (see Table 2-2)
<table>
<thead>
<tr>
<th>Infection</th>
<th>Clinical Findings</th>
<th>Extracutaneous Findings</th>
<th>Important Points</th>
</tr>
</thead>
</table>
| **Cytomegalovirus (CMV)** | Petechiae, purpura, vesicles, and “blueberry muffin” lesions | Intratuterine growth retardation, chorioretinitis, intracranial calcification | ⇒ Leading infectious cause of deafness and mental retardation  
⇒ Typical findings on histology: enlarged endothelial cells with intranuclear inclusions |
| **Herpes Simplex Virus (HSV)** | Localized or disseminated skin lesions (vesicles, erosions, scarring) | Encephalitis (predilection for temporal lobes), multi-organ failure, ocular infection | ⇒ Majority HSV2, 85% acquired perinatally  
⇒ 50–75% mortality if left untreated |
| **Rubella**               | “Blueberry muffin” lesions | Cataracts, deafness, congenital heart disease, CNS findings (microcephaly, hydrocephaly), hepatosplenomegaly (HSM) | ⇒ 50% chance of deafness  
⇒ Severe birth defects if within first 16 weeks of pregnancy  
⇒ Non-immune pregnant woman transfer the virus to the fetus |
| **Toxoplasmosis**         | “Blueberry muffin” lesions favoring the trunk | Ocular abnormalities (chorioretinitis, blindness), CNS abnormalities (deafness, mental retardation, seizures), thrombocytopenia, intracranial calcification | ⇒ Includes permanent sequelae of early congenital signs  
⇒ Higoumenakis sign: congenital thickening of the medial aspect of the clavicle |
| **Varicella**             | Cicatricial skin lesions | Ocular abnormalities (chorioretinitis, cataracts), cortical atrophy, psychomotor retardation, hypoplastic limbs | ⇒ Greater risk in first 20 weeks  
⇒ 2% risk of embryopathy in women with infection within first two trimesters |
| **Syphilis, Early Congenital** | Syphilitic pemphigus, rhagades (radial furrows/ fissures in perioral area, turn into parrot lines), papulosquamous macules/ papules (like secondary syphilis) | Snuffles (rhinitis, secondary to ulcerated mucosa), enlarged lymph nodes and spleen, neurosyphilis | ⇒ Early congenital syphilis occurs from birth to 2 years of age  
⇒ Only congenital syphilis may show bullous lesions  
⇒ Papulosquamous lesions common in the diaper area |
| **Syphilis, Late Congenital** | Hutchinson’s teeth, Higoumenakis sign, mulberry molars, saddle nose, saber shins, parrot lines and furrows | Interstitial keratitis, gummas along long bones/skull, tabes dorsalis, generalized paresis | ⇒ Includes permanent sequelae of early congenital signs  
⇒ Higoumenakis sign: congenital thickening of the medial aspect of the clavicle |
### Table 2-2 Differential Diagnosis for Diaper Dermatitis

<table>
<thead>
<tr>
<th>Entity</th>
<th>Clinical Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Candidal Dermatitis</strong></td>
<td>Bright red patches with pustules and satellite papules, ± intertriginous involvement (<em>including scrotum</em>), ± thrush</td>
</tr>
<tr>
<td><strong>Irritant Dermatitis</strong></td>
<td>Poorly demarcated erythematous plaques, <em>spares inguinal folds</em></td>
</tr>
<tr>
<td><strong>Seborrheic Dermatitis</strong></td>
<td>Typical salmon-covered scaly patches and plaques involving the scalp, groin, and other intertriginous areas</td>
</tr>
<tr>
<td><strong>Psoriasis</strong></td>
<td>Sharply demarcated bright pink to red plaques <em>involving inguinal creases</em>, minimal scale; most common psoriatic presentation in infants</td>
</tr>
<tr>
<td><strong>Allergic Contact Dermatitis</strong></td>
<td>Rare in infants, ± related to topical preparations or foods</td>
</tr>
<tr>
<td><strong>Atopic Dermatitis</strong></td>
<td>Increased incidence of diaper dermatitis in atopic patients</td>
</tr>
<tr>
<td><strong>Miliaria</strong></td>
<td>Clear vesicles or erythematous papules/pustules due to blocked eccrine ducts from heat or humidity in diaper area</td>
</tr>
<tr>
<td><strong>Granuloma Gluteale Infantum</strong></td>
<td>Red to violaceous granulomatous nodules over the vulva, perianal area, buttocks, ± scrotum; due to irritation, occlusion, candidal infection</td>
</tr>
<tr>
<td><strong>Perianal Pseudoverrucous Nodules</strong></td>
<td>Erythematous nodules and papules in children with fecal incontinence</td>
</tr>
<tr>
<td><strong>Acrodermatitis Enteropathica</strong></td>
<td>Erythematous crusted patches/plaques with flaccid bullae in perineal, periorificial, and distal extremities; due to ↓ <em>zinc level</em> (also ↓ <em>alkaline phosphatase</em> as zinc-dependent); may occur in following settings:</td>
</tr>
<tr>
<td></td>
<td>1. Premature infants (poor absorption and ↑ requirement of zinc) when weaned off breast milk (which has adequate zinc level)</td>
</tr>
<tr>
<td></td>
<td>2. Inherited form (AR) manifests when weaned off breast milk</td>
</tr>
<tr>
<td></td>
<td>3. Healthy infants if low zinc level in maternal milk</td>
</tr>
<tr>
<td></td>
<td>4. Acquired form if malabsorption or inadequate nutrition</td>
</tr>
<tr>
<td><strong>Cystic Fibrosis</strong></td>
<td>Resembles acrodermatitis enteropathica, also due to zinc deficiency ± pedal edema, failure to thrive, infections and malabsorption</td>
</tr>
<tr>
<td><strong>Multiple Carboxylase Deficiency</strong></td>
<td>Both resemble acrodermatitis enteropathica (periorificial dermatitis); treatment for both forms (listed below) is <em>biotin</em></td>
</tr>
<tr>
<td><strong>Biotin Deficiency</strong></td>
<td>1. Neonatal form: AR, <em>holocarboxylase synthetase deficiency</em>, ± erythroderma with alopecia, fatal if not treated</td>
</tr>
<tr>
<td></td>
<td>2. Juvenile form: <em>biotinidase deficiency</em>, ± seizures, alopecia, hearing loss, developmental delay</td>
</tr>
<tr>
<td><strong>Langerhans Cell Histiocytosis</strong></td>
<td>Yellow-brown crusted papules with purpura in seborrheic distribution; ± systemic involvement; Langerhans cells (<em>CD1a +, S100+</em>)</td>
</tr>
<tr>
<td><strong>Kawasaki Disease</strong></td>
<td>Tender erythema in perineal area which later desquamates</td>
</tr>
<tr>
<td><strong>Perianal Strep</strong></td>
<td>Bright red, well-demarcated perianal erythema and involving creases</td>
</tr>
<tr>
<td><strong>Bullous Impetigo</strong></td>
<td>Honey-colored crusts and flaccid bullae</td>
</tr>
<tr>
<td><strong>Scabies</strong></td>
<td>Erythematous nodules involving diaper area, ± genitalia</td>
</tr>
<tr>
<td><strong>Congenital Syphilis</strong></td>
<td>Reddish-brown papulosquamous eruption, may be <em>erosive or bullous</em></td>
</tr>
</tbody>
</table>
## 2.2 CHILDHOOD INFECTIOUS DISEASES

### Table 2-3 Childhood Infections

<table>
<thead>
<tr>
<th>Disease</th>
<th>Exanthem</th>
<th>Etiology/Course</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Acute Hemorrhagic Edema of Infancy</strong> (Finkelstein Disease)</td>
<td>Large circinate painful purpuric plaques involving face, ears, distal extremities → evolve into edematous targetoid lesions</td>
<td>Etiology: likely infectious (viral or bacterial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age: 6 months–3 years; self-limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Leukocytoclastic vasculitis</strong> seen on histology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May be hypersensitivity reaction to infection (medication/vaccination less likely)</td>
</tr>
<tr>
<td><strong>Erythema Infectiosum</strong> (‘Slapped Cheek’ or Fifth Disease)</td>
<td>Bright red macular erythema over cheeks → <strong>lacy eruption</strong> mainly on the extremities</td>
<td>Etiology: parvovirus B19 (ssDNA) also causes hydrops fetalis; peaks in spring and winter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age: school-age children; self-limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mild prodrome, 10% with arthralgias</td>
</tr>
<tr>
<td><strong>Gianotti–Crosti Syndrome</strong></td>
<td>Abrupt onset of skin-colored to pink-red edematous papules to cheeks, buttocks, extremities</td>
<td>Etiology: likely infectious (HBV, EBV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age: 6 months–2 years; self-limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May have low-grade fever and lymphadenopathy</td>
</tr>
<tr>
<td><strong>Hand-Foot-Mouth Disease</strong></td>
<td>Elliptical grayish vesicles, pustules, and erosions on hands, feet, and buttocks</td>
<td>Etiology: <strong>coxsackievirus A16</strong> (enterovirus 71 less often)</td>
</tr>
<tr>
<td></td>
<td>Oral: vesicles/erosions red base</td>
<td>Age: children &lt;10 years (± adults); self-limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fever, sore mouth, anorexia, abdominal pain; enteroviral infection may also cause myocarditis, pneumonia, meningoencephalitis</td>
</tr>
<tr>
<td><strong>Henoch–Schönlein Purpura</strong> (HSP)</td>
<td>Purpuric macules and papules favoring <strong>lower extremities and buttocks</strong></td>
<td>Etiology: possibly infectious (viral, strep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age: peaks at 4–7 years (± adults); self-limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presents 1–2 week after upper respiratory infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthralgias, GI bleeding, abdominal pain, nephritis with <strong>hematuria → IgA vasculitis</strong></td>
</tr>
<tr>
<td><strong>Herpangina</strong></td>
<td>Exanthem: often absent</td>
<td>Etiology: various enteroviruses (often coxsackie group A/B and echovirus)</td>
</tr>
<tr>
<td></td>
<td>Oral: painful gray vesicles on tonsillar, palate, buccal mucosa</td>
<td>Age: 3–10 years old; self-limited</td>
</tr>
<tr>
<td><strong>Kawasaki Disease</strong> (Mucocutaneous Lymph Node Syndrome)</td>
<td>Polymorphous eruption (morbilliform, erythema multiforme-like or bullous); ± edema and erythema of distal extremities; can be generalized or localized (groin, LE)</td>
<td>Etiology: unknown but likely infectious</td>
</tr>
<tr>
<td></td>
<td>Oral: red swollen or dry fissured lips; strawberry tongue; pharyngeal erythema</td>
<td>Age: children &lt;5 years of age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthritis, abdominal pain, GI symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**Complications: cardiac aneurysm (in ¼ of untreated patients), myocarditis, pericarditis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Need 5 of 6 criteria for diagnosis: rash • fever &gt;5 days • conjunctivitis • palmoplantar erythema, edema, or desquamation • swollen lips or red tongue • cervical lymphadenopathy</td>
</tr>
<tr>
<td><strong>Measles</strong> <em>(Rubeola or First Disease)</em></td>
<td>Erythematous macules/papules over forehead, hairline, and behind the ears → spreads downward</td>
<td>Etiology: measles virus (paramyxovirus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age: unvaccinated children</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prodrome: fever, cough, nasal congestion, rhinorrhea, conjunctivitis; rash appears after Koplik spots</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**Complications: encephalitis, otitis media, pneumonia, myocarditis, ± subacute sclerosing panencephalitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

*Note: The table provides a detailed overview of various childhood infectious diseases, including their symptoms, etiology, and potential complications.*
<table>
<thead>
<tr>
<th>Disease</th>
<th>Exanthem</th>
<th>Etiology/Course</th>
</tr>
</thead>
</table>
| **Infectious Mononucleosis** | Polymorphous: morbilliform (common), urticarial, petechial, or erythema multiforme-like lesions | Etiology: infectious (EBV)  
Age: children, young adults (15–25 years); self-limited  
Fever, pharyngitis, fatigue, myalgias, headaches, hepatosplenomegaly, lymphadenopathy  
Complications: splenic rupture, airway obstruction, hepatitis |
| Of note, morbilliform eruption may occur after treatment with ampicillin | | |
| Papular Purpuric Gloves and Socks Syndrome | Erythema, edema, petechiae, and purpura on palms/soles (± extension to dorsal aspect), + burning and pruritus | Etiology: parvovirus B19  
Age: children and young adults; self-limited  
Mild prodromal symptoms, occurs mainly in young adults; peaks in spring |
| Roseola (Exanthem Subitum or Sixth Disease) | Circular to elliptical “rose red” macules or papules involving trunk, occasionally surrounded by white halo | Etiology: human herpesvirus 6 (HHV6)  
Age: 6 months–3 years  
Sudden-onset high fever; rash begins as fever subsides  
Complications in healthy patient: mainly seizures |
| Rubella (German Measles or Third Disease) | Erythematous macules and papules on face → spreads acrally, accompanied by tender lymphadenopathy (occipital, postauricular, cervical) | Etiology: togavirus (ssRNA)  
Age: unvaccinated children/adults; self-limited  
Usually mild prodrome  
Complications: arthralgia/arthritis, hepatitis, myocarditis, pneumonia |
| Scarlet Fever (Second Disease) | Erythema of axilla, neck, chest → evolve to pink papules with erythematous background (sandpaper-like) → hand and foot desquamation (7–10 days later); Pastia’s lines (linear petechial streaks in body folds)  
Oral: “red strawberry” tongue | Etiology: group A β-hemolytic streptococci (erythrogenic toxin A, B, C)  
Age: children (1–10 years old)  
Extracutaneous: sore throat, headaches, chills, fever, nausea, abdominal pain, anorexia  
Treatment: PCN 10–14 days (erythromycin in PCN-allergic pts) |
| Unilateral Laterothoracic Exanthem | Morbilliform or eczematous eruption in axilla and lateral trunk with unilateral dominance (± bilateral involvement) | Etiology: likely viral  
Age: children (6 months–10 years); self-limited |
| Varicella (Chickenpox) | Pruritic, erythematous macules/papules of scalp, face → spreads to trunk and extremities, evolves into vesicles with narrow red halo (“dew drops on rose petal”), central crust or necrosis seen within lesions | Etiology: varicella zoster virus (VZV)  
Age: children and adults; self-limited in healthy children  
Complications in children: secondary bacterial infection  
Adults with more severe presentation (pneumonia, 10–30% mortality if untreated)  
All stages of development seen simultaneously |
Figure 2.3
A: Dermal hematopoiesis (Courtesy of Dr. Vandana Mehta)
B: Congenital syphilis (Courtesy of Dr. Paul Getz)
C: Congenital syphilis (Courtesy of Dr. Paul Getz)
D: Congenital syphilis (Courtesy of Dr. Paul Getz)
E: Candidiasis (Courtesy of Dr. Paul Getz)
Figure 2.4
A: Acrodermatitis enteropathica
  (Courtesy of Michelle B. Bain)
B: Acrodermatitis enteropathica
  (Courtesy of Michelle B. Bain)
C: Gianotti–Crosti syndrome
  (Courtesy of Dr. Michelle B. Bain)
D: Gianotti–Crosti syndrome
  (Courtesy of Dr. Michelle B. Bain)
E: Varicella
  (Reprint from Abdel-Halim AW. Passing the USMLE. New York, NY: Springer, 2009)
F: Papular purpuric gloves and socks syndrome
  (Reprint from Burgdorf WH, Plewig G, Wolff HH, Landthaler M, eds.. Braun-Falco’s Dermatology. 3rd ed. Heidelberg: Springer; 2009)
2.3 PAPULOSQUAMOUS AND ECZEMATOUS DERMATOSES

Psoriasis (Figure 2.5A)
- Approximately 25% patients will have presentation before age 15
- Presents as erythematous well-demarcated plaques with micaceous scale
- Guttate psoriasis more common in children; presents with raindrop-like papules in an eruptive pattern; common triggers include strep infection, viral infection, stress, and trauma

Pityriasis Lichenoides (PL)
- Two diseases forming spectrum of PL: pityriasis lichenoides et varioliformis acuta (PLEVA) and pityriasis lichenoides chronica (PLC)
- PLEVA: abrupt onset of erythematous papules and vesicles with crusted or necrotic centers, often involuting within weeks to months; treat with oral erythromycin, phototherapy, and/or topical corticosteroid
- PLC: reddish-brown papules with adherent scale, heals with dyschromia; more chronic course lasting months to years

Acropustulosis of Infancy (Figure 2.5B)
- Onset from 6 months to 2 years; resolves by age 3
- Presents with recurrent crops of pruritic pustules on palms, soles, distal extremities (may mimic scabies infection so prudent to perform mineral oil scraping)
- Treatment: topical corticosteroid

Pityriasis Rubra Pilaris (PRP) (Figure 2.5C)
- Three juvenile forms in addition to two adult forms (I/II)

<table>
<thead>
<tr>
<th>Classic Juvenile Form (III)</th>
<th>Resembles classic adult form but with early onset (first 2 years of life); most resolve within 3 years; 10% cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumscribed Juvenile Form (IV)</td>
<td>Lesions on extensor surfaces and present in prepubertal years; 25% cases (50% persist into adulthood)</td>
</tr>
<tr>
<td>Atypical Juvenile Form (V)</td>
<td>Similar to type III + scleroderma-like changes of hands/feet, familial basis; presents in early childhood with unrelenting course; 5% cases</td>
</tr>
</tbody>
</table>

Pityriasis Rosea (PR)
- Self-limited papulosquamous eruption; likely viral pathogen (human herpesvirus 7, less likely HHV 6)
- Presents with initial herald patch (precedes eruption by 1–2 weeks) followed by salmon-colored oval patches and plaques with inner scale along long axis of Langer’s lines of cleavage (“Christmas tree” pattern on posterior trunk); variants include inverse pattern (flexural accentuation) and papular PR (young children and darker-skinned patients)
**Lichen Striatus** (Figure 2.6A, B)
- Self-limited, linear inflammatory condition in children
- Presents with small erythematous scaly papules forming linear band → spreads down extremity or trunk and typically follows lines of Blaschko, ± nail involvement
- Hypopigmentation may persist for months to years after lesions resolve and points to diagnosis

**Keratosis Pilaris (KP)**
- Excessive keratinization causing horny follicular plugs on upper arms, thighs, and cheeks; associated with atopy

**KP Atrophicans**
- Group of disorders in children with faulty follicular keratinization followed by atrophy and scarring
  - **KP atrophicans faciei**: erythema with follicular spiny papules of eyebrows, cheeks, and scalp; involute and leave **pitted atrophic scars**; term **ulerythema ophyrogenes** if limited to lateral 1/3 of eyebrows, associated with Noonan syndrome
  - **Atrophoderma vermiculata**: pit-like atrophic scarring of follicles on face (“honeycomb” atrophy), associated with **Rombo syndrome** and Down syndrome

**Atopic Dermatitis (AD)** (Figure 2.6C)
- Occurs in 10–15% children, often presenting at 2–3 months of age; multifactorial pathogenesis but includes ↑ secretion of T<sub>H</sub>2 cytokines (IL-4, IL-5)
- Triad of atopy: AD, allergic rhinitis, asthma
- Few may have allergy to specific foods, which may exacerbate AD (eggs, milk, soybeans, fish, wheat, peanuts)
- Presents with eczematous lesions, xerosis, and lichenification
- Distribution varies with age
  - Infants: face, scalp, and extensors
  - Children: antecubital/popliteal fossae, neck, wrists, ankles
  - Adults: typically hands (chronic hand eczema)

Atopic patients with ↓ amount of innate antimicrobial peptides: human β-defensins (HBD) and cathelicidins (LL37)
• **Pityriasis alba**: hypopigmented patches with minimal scale; may be only manifestation of AD (Figure 2.7A)

• Complications: keratoconus (conical deformity of cornea), eyelid dermatitis, ↑ risk of infection (impetigo, eczema herpeticum, molluscum contagiosum) (Figure 2.7B)

• Treatment: topical corticosteroid, topical calcineurin inhibitor, oral corticosteroid (short course), oral antihistamine, phototherapy

**Juvenile Plantar Dermatosis**

• Typically in children with an atopic diathesis; related to increased humidity from impermeable material in shoes

• Presents with dry, scaly glazed patches with fissures involving forefoot plantar surface

• Chronic but typically self-limited

### 2.4 PIGMENTED LESIONS

**Café Au Lait Macule (CALM)**

• Presents as a light to dark brown macule or patch

• Single lesion in 10–20% of normal population; multiple lesions ± associated with different genodermatoses (McCune-Albright syndrome, neurofibromatosis)

**Lentigines**

• Presents as brown macules with increased number of melanocytes; no relationship to sunlight

• Multiple lentigines may be associated with the following:

<table>
<thead>
<tr>
<th>LEOPARD Syndrome</th>
<th>AD, PTEN11 gene, café-noir macules, EKG changes, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, growth retardation, deafness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carney Complex (LAMB or NAME syndrome)</td>
<td>AD, PRKAR1A gene, psammomatous melanotic schwannomas, cardiac/cutaneous myxomas, blue nevi, endocrine overactivity</td>
</tr>
<tr>
<td>Peutz–Jeghers Syndrome</td>
<td>AD, STK11 gene (serine threonine kinase), mucocutaneous (oral/acral) lentigines, intestinal polyposis, ± intussusception, various malignancies</td>
</tr>
<tr>
<td>Laugier–Hunziker Syndrome</td>
<td>Mucocutaneous lentigines, longitudinal melanonychia, genital melanosis</td>
</tr>
<tr>
<td>Bannayan–Riley–Ruvalcaba Syndrome</td>
<td>AD, PTEN gene, penile &gt; vulvar lentigines, lipomas, hemangiomas</td>
</tr>
</tbody>
</table>

Figure 2.7

A: **Pityriasis alba**  
(Courtesy of Dr. Paul Getz)

B: **Molluscum contagiosum**
**Ephelides (Freckles)**
- Present as light brown macules in sun-exposed areas; more prominent in children with fair skin and during summer time; onset typically within first 3 years of age
- Can be a marker for UV-induced damage if acquired
- Histology: normal number of melanocytes, increased pigment in keratinocytes

**Congenital Nevus (CN) (Figure 2.8A)**
- Onset at birth or first year typically; 1–2% of population
- Categorized as small (<1.5 cm), medium (1.5–20 cm), and large (>20 cm or 10% BSA)
- Slight ↑ risk of melanoma (highest in large CNs); 3–12% of giant (large) CNs may develop melanoma (different studies show varying percentages); axial nevi with greatest risk
- If large nevus over scalp, rule out neurocutaneous melanosis with MRI

**Neurocutaneous melanosis:** ↑ intracranial pressure, leptomeningeal melanoma, spinal cord compression

**Spitz Nevus (Epithelioid or Spindle Cell Nevus) (Figure 2.8B)**
- Presents as dome-shaped red-brown or tan-pink smooth surfaced papule; typically occurs within first two decades
- Pigmented, congenital, and agminated variants reported
- Histology: Kamino bodies (PAS + globules)
- Characteristic starburst dermoscopic finding in pigmented Spitz nevi

**Halo Nevus (Sutton’s Nevus)**
- Melanocytic nevus with surrounding hypopigmented halo in which central nevus either persists or involutes
- Typically appears in adolescence; may appear in setting of vitiligo; prudent to rule out concomitant melanoma (rare) by performing full skin exam

**Nevus Spilus (Speckled Lentiginous Nevus) (Figure 2.8C)**
- Presents as tan, regularly bordered patch with darker macules within lesion
- Melanoma rarely arises within nevus component
- Associated with phakomatosis pigmentovascularis and pigmentokeratotica (latter with organoid nevus + hemiatrophy + neurologic defects)

**Melanoma**
- 0.3–0.4% of melanomas in prepubertal children
- ↑ Risk with fair skin, blue eyes, blonde/red hair, CDKN2A or p16 mutation, xeroderma pigmentosum, dysplastic nevus syndrome, large congenital nevus, or neurocutaneous melanosis
**Becker’s Nevus (Becker’s Melanosis)** (Figure 2.9A, B)
- Acquired unilateral lesion found in adolescent males (second or third decade) typically on shoulder, upper chest, or back
- Presents as hyperpigmented hypertrichotic patch or plaque associated with underlying smooth muscle hamartoma (arrector pili)
- Histology: ↑ melanin in epidermis, often smooth muscle hamartoma present in dermis

**Blue Nevus** (Figure 2.9C)
- Congenital or acquired (typically early childhood)
- Different types: common, cellular, and combined
- Multiple blue nevi associated with Carney complex (LAMB/NM syndrome)
- Histology: normal epidermis, many elongated dendritic melanocytes within dermis, large amounts of melanin often seen within melanocytes

**Nevus of Ota (Nevus Fuscoceruleus Ophthalmomaxillaris, Oculodermal Melanocytosis)** (Figure 2.9D)
- Onset either near birth or during puberty
- Most common in Asian population, mainly women
- Presents as unilateral, blue-gray macules typically involving V1 and V2 distribution of trigeminal nerve
- Most common extracutaneous sites: sclera > tympanum > nasal mucosa > pharynx > palate

**Nevus of Ito (Nevus Fuscoceruleus Acromiodeltoideus)**
- Similar presentation to nevus of Ota but typically occurs in shoulder region (supraclavicular, scapular, and deltoid)

**Hori’s Nevus (Acquired Nevus of Ota-like Macules)**
- Onset in late adolescence, mainly in Asian women
- Bilateral nevus of Ota-like macules of the zygomatic region; may be misdiagnosed as melasma

**Congenital Dermal Melanocytosis (Mongolian Spot)**
- Common in infants with pigmented skin
- Presents with blue-gray macules or patches typically over lumbosacral skin or buttocks
- If extensive, consider phakomatosis pigmentovascularis
- Histology: dendritic melanocytes situated in lower half of dermis, cells arranged parallel to epidermis
### 2.5 BULLOUS DISEASES

#### Table 2-4 Epidermolysis Bullosa

<table>
<thead>
<tr>
<th>EB Subtype</th>
<th>Inh</th>
<th>Gene</th>
<th>Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>EB SIMPLEX (EBS)</strong></td>
<td></td>
<td></td>
<td><strong>EB SIMPLEX (EBS)</strong> <em>Split: Epidermal Basal Layer</em></td>
</tr>
<tr>
<td>Dowling-Meara (EBS Herpetiformis)</td>
<td>AD</td>
<td>K5/K14</td>
<td>Onset at birth, grouped or herpetiform blisters (figurate), <em>significant mucosal membrane and laryngeal/esophageal involvement</em> (<em>±</em> hoarseness), nail dystrophy, confluent PPK, scarring, early death</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EM: <em>clumped tonofilaments</em> in basal keratinocytes</td>
</tr>
<tr>
<td>Weber-Cockayne (Localized)</td>
<td>AD</td>
<td>K5/K14</td>
<td>Onset typically childhood/adolescence, palmpoplantar bullae/erosions, heal without scarring</td>
</tr>
<tr>
<td>Koebner (Generalized)</td>
<td>AD</td>
<td>K5/K14</td>
<td>Generalized bullae at birth, PPK, nail dystrophy, mucosal erosions, heals <em>without scarring</em></td>
</tr>
<tr>
<td>EBS Muscular Dystrophy</td>
<td>AR</td>
<td>Plectin</td>
<td>Widespread bullae at birth, <em>muscular dystrophy</em>, scarring, hair/nail/tooth/oral disease, early death</td>
</tr>
<tr>
<td>EBS Mottled Pigmentation</td>
<td></td>
<td></td>
<td>Resembles localized and generalized EBS + <em>reticulated hyperpigmentation over trunk</em></td>
</tr>
<tr>
<td><strong>JUNCTIONAL EB (JEB)</strong></td>
<td></td>
<td></td>
<td><strong>JUNCTIONAL EB (JEB)</strong> <em>Split: Basement Membrane (Lamina Lucida)</em></td>
</tr>
<tr>
<td>Herlitz (EB Lethalis)</td>
<td>AR</td>
<td>Laminin 5</td>
<td>Severe, widespread bullae, nonhealing <em>exuberant granulation tissue</em> (perioral, axillae, neck), enamel defects, absent nails, mucosal involvement (respiratory/ GI tract with hoarseness), early death</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(laminin-332)</td>
<td></td>
</tr>
<tr>
<td>Non-Herlitz (Generalized Atrophic Benign EB or GABEB)</td>
<td>AR</td>
<td>Laminin 5 or BPAG2 (BP180)</td>
<td>Widespread bullae at birth, <em>heal with atrophic scars</em>, mild oral involvement, <em>scarring alopecia</em>, nail dystrophy, improves with time</td>
</tr>
<tr>
<td>JEB with Pyloric Atresia</td>
<td>AR</td>
<td>α6β4 integrin</td>
<td>Severe congenital blistering, hydronephrosis, <em>pyloric atresia</em>, mucosal erosions</td>
</tr>
<tr>
<td><strong>DYSTROPHIC EB (DEB)</strong></td>
<td></td>
<td></td>
<td><strong>DYSTROPHIC EB (DEB)</strong> <em>Split: Dermal (Sublamina Densa)</em></td>
</tr>
<tr>
<td>Hallopeau-Siemens Recessive DEB (RDEB-HS)</td>
<td>AR</td>
<td>Type VII collagen</td>
<td>Severe widespread bullae at birth, heals with atrophic scarring (on hands/feet → <em>“mitten deformity”</em>), milia, nail dystrophy, mucosal strictures, oral, esophageal, cutaneous SCCs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hallopeau-Siemens (RDEB-nHS)</td>
<td>AR</td>
<td>Type VII collagen</td>
<td>Skin changes localized to acral bony prominences, Hallopeau-Siemens symptoms but less severe</td>
</tr>
<tr>
<td>Cockayne-Touraine (DDEB-CT)</td>
<td>AD</td>
<td>Type VII collagen</td>
<td>Bullae mainly over extremities, heal with milia/atrophic scars/keloids, nail dystrophy</td>
</tr>
<tr>
<td>Pasini Variant (DDEB-P)</td>
<td>AD</td>
<td>Type VII collagen</td>
<td>Similar to Cockayne subtype + albopapuloid lesions (<em>white perifollicular papules, slowly enlarge</em>)</td>
</tr>
</tbody>
</table>
Figure 2.10
A: EB simplex (Weber–Cockayne) (Courtesy of Dr. Paul Getz)
B: Dominant dystrophic EB (Cockayne–Touraine)
(Courtesy of Dr. Paul Getz)
C: Recessive dystrophic EB
D: Recessive dystrophic EB
**Chronic Bullous Disease of Childhood** (Figure 2.11A)

- Blistering disorder with onset typically before age 5
- Target antigen: 97 kDa Ag (LAD-1 or LABD97): cleaved ectodomain of BPAG2
- Presents with annular and herpetiform bullae favoring extensor surfaces/ groin (“crown of jewels” configuration)
- Histology: subepidermal bullae with neutrophils in dermal papillae (similar to dermatitis herpetiformis)
- Treat with dapsone or sulfapyridine

**Neonatal Pemphigus**

- Presents in infants whose mothers have pemphigus vulgaris; due to passive transfer of maternal IgG to fetus
- Self-limited; resolves within few weeks of birth

**Hailey–Hailey Disease (Familial Benign Chronic Pemphigus)**

(Figure 2.11B)

- AD, ATP2C1 gene (encodes Golgi-associated Ca2+ ATPase hSPCA1), results in abnormal intracellular calcium signaling; onset typically second to third decade
- Presents with flaccid vesicles initially on erythematous base over intertriginous areas, ruptures easily, and gives rise to macerated or crusted erosions
- Histology: extensive epidermal acantholysis “dilapidated brick wall”

Think of “Hailey’s Comet” to remember ATP2C1

**2.6 EPIDERMAL, APPENDAGEAL, AND DERMAL TUMORS**

**Epidermal Nevus (EN)** (Figure 2.11C)

- Hamartoma of epidermis and papillary dermis; onset typically at birth (± adolescence, rare in adulthood)
- Presents as hyperpigmented papillomatous papules and plaques along lines of Blaschko
- Ichthyosis hystrix: extensive bilateral systematized lesions
- **ILVEN** (inflammatory linear verrucous epidermal nevus): erythematous scaly plaque along lines of Blaschko; not associated with any neurologic defects
- **Epidermal nevus syndrome** (Schimmelpenning syndrome): sporadic; epidermal nevus, underlying CNS, ocular, cardiac, and skeletal defects, biopsy to r/o epidermolytic hyperkeratosis (EHK)

Of note, if biopsy of EN shows EHK, the patient may be at risk with offspring with full-blown EHK

Figure 2.11

A: Chronic bullous disease of childhood
(Courtesy of Dr. Michelle B. Bain)
B: Hailey–Hailey disease
(Courtesy of Dr. Paul Getz)
C: ILVEN (Courtesy of Dr. Paul Getz)
**Nevus Sebaceus** (Figure 2.12A, B)
- Presents as solitary yellow-orange slightly raised plaque typically on scalp or face; plaque typically thickens and becomes more verrucous or pebbly during childhood
- Mutation in PTCH gene has been reported (deletion)
- Benign tumors (trichoblastoma, syringocystadenoma papilliferum) and malignant tumors (BCC < 1% cases) can arise within lesion

**Basal Cell Carcinoma**
- Seen in children with xeroderma pigmentosum (XP) and basal cell nevus syndrome (BCNS)

**Squamous Cell Carcinoma**
- Seen in children with XP, dystrophic EB, and albinism

**Pilomatrixoma (Calcifying Epithelioma of Malherbe)**
- Onset typically in childhood
- Presents as solitary firm, skin-colored to faint blue papule or cyst on face or upper trunk
- Histology: anucleate cornified cells (“ghost” or “shadow” cells), calcification seen in late lesions
- Multiple pilomatrixomas may be associated with myotonic dystrophy (β-catenin defect)

**Trichoepithelioma** (Figure 2.12C)
- Benign adnexal neoplasm usually appearing in childhood
- Presents as skin-colored translucent papules (usually multiple) along the nasolabial folds or periorbital regions
- Multiple lesions in Brooke–Spiegler syndrome (trichoepitheliomas, cylindromas, spiradenomas)

**Angiofibroma (Fibrous Papule)**
- Skin-colored firm papule on face
- Multiple lesions associated with tuberous sclerosis (once known as adenoma sebaceum) with onset in early to mid-childhood
Neurofibroma (NF) (Figure 2.13A)
- Presents as skin-colored, soft or rubbery papulonodule with positive “buttonhole” sign (easily invaginated)
- Commonly seen as solitary lesion; multiple lesions associated with neurofibromatosis
- Plexiform NF considered pathognomonic for NF1, malignant transformation in 2–13%

Connective Tissue Nevus (Figure 2.13B, C)
- Also known as shagreen patch (tuberous sclerosis) collagenoma, elastoma, or dermatofibrosis lenticularis disseminata (latter in Buschke–Ollendorff syndrome)
- Onset at birth or early childhood; likely hamartoma
- Presents as firm, solitary, or multiple skin-colored papules, nodules, or plaques

Infantile Digital Fibroma (Figure 2.13D)
- Onset within 1 year of age
- Presents as multiple firm, smooth dome-shaped nodules on dorsolateral fingers/toes (spares thumb and great toe)
- Benign with spontaneous regression within 2–3 years typically; high local recurrence rate with surgical excision
- Histology: eosinophilic intracytoplasmic perinuclear inclusions within spindle cells

Infantile Myofibromatosis (Congenital Generalized Fibromatosis)
- Rare, onset at birth or within first 2 years
- Presents as one or more firm, rubbery skin-colored to purple papulonodules on head, neck, or trunk
- Two types: localized with no visceral involvement, good prognosis; visceral involvement with high mortality

Fibrous Hamartoma of Infancy
- Onset at birth or within first year of life
- Presents as painless, solitary skin-colored subcutaneous nodule typically involving axilla, shoulder, or upper arm (less likely groin area)
- Treat with local excision

Fibromatosis Colli
- Infiltration of fibrous tissue involving the lower third of the sternocleidomastoid muscle at birth
- Typically spontaneous remission within few months

Juvenile Hyaline Fibromatosis
- Due to mutation in capillary morphogenesis protein 2
- Multiple firm papules and nodules involving the face, extremities, and scalp; hypertrophic gums and disfigurement with flexion contractions
Juvenile Xanthogranuloma (JXG) (Figure 2.14A, B)
- Non-Langerhans cell histiocytosis with Touton giant cells; onset typically within first year of life
- Two types: micronodular (small, multiple) or macronodular (larger size, few in number)
- Presents as single or multiple firm, pink-red papulonodules with yellow hue on head/neck > trunk/upper extremities
- Regression typically seen in children (not in adults)
- 0.5% with ocular involvement: glaucoma, hyphema (may rarely result in blindness)
- Association with NF1 and juvenile myelomonocytic leukemia (JMML)

Langerhans Cell Histiocytosis (LCH) (Figure 2.14C)
- Clonal proliferative disease of Langerhans cells (comma-shaped nuclei, S100+, CD1a+, intracytoplasmic Birbeck granules seen on EM), four overlapping syndromes
- Current classification by number of organ systems involved (single vs. multisystem), but historically grouped as follows:

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letterer–Siwe Disease</td>
<td>Multisystem involvement, (acute disseminated form); onset typically before 2 years of age</td>
</tr>
<tr>
<td></td>
<td>Small, pink papules, pustules, vesicles with scale/crust/petechiae in seborrheic distribution</td>
</tr>
<tr>
<td>Hand–Schuller–Christian Disease</td>
<td>Onset between 2 and 6 years of age</td>
</tr>
<tr>
<td></td>
<td>Typical triad: diabetes insipidus, bone lesions, exophthalmos</td>
</tr>
<tr>
<td></td>
<td>Osteolytic bone lesions (cranium)</td>
</tr>
<tr>
<td>Eosinophilic Granuloma</td>
<td>Onset in older children, localized LCH variant</td>
</tr>
<tr>
<td></td>
<td>Asymptomatic granulomatous lesions involving bone (cranium), spontaneous fractures</td>
</tr>
<tr>
<td>Congenital Self-Healing Reticulohistiocytosis</td>
<td>Onset at birth or soon after, limited to skin; also known as Hashimoto-Pritzker disease</td>
</tr>
<tr>
<td></td>
<td>Widespread, red-brown papulonodules</td>
</tr>
<tr>
<td></td>
<td>Self-healing within weeks to months</td>
</tr>
</tbody>
</table>

Benign Cephalic Histiocytosis
- Self-limit ed histiocytosis (S100 negative non-LCH); onset within first 3 years of life
- Presents with small red-brown macules and papules on face, spreading to neck and ears > trunk and arms; spontaneous resolution after months or years
Dermoid Cyst (Figure 2.15A)
- Seen typically in infants along embryonic fusion plane
- Presents as discrete, subcutaneous nodule commonly around eyes or nasal root
- Histology: lined by stratified squamous epithelium (with granular layer) containing appendageal elements
- CT/MRI should be performed to rule out connection to CNS before excision

Mastocytosis (Figure 2.15B, C)
- Spectrum of disorders with mast cell hyperplasia in skin and other organs
- Childhood mastocytosis – onset before puberty (50% before age 2), c-kit alteration (proto-oncogene, tyrosine kinase subfamily); several forms in children:
  
<table>
<thead>
<tr>
<th>Solitary Mastocytoma</th>
<th>– Tan to brown, minimally infiltrated plaque or nodule; spontaneous resolution over months</th>
<th>– Positive Darier sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urticaria Pigmentosa (UP)</td>
<td>– Onset early childhood, may occur in adults</td>
<td>– Hyperpigmented to pink pruritic macules or papules on trunk; positive Darier sign</td>
</tr>
<tr>
<td></td>
<td>– Variant: bullous UP</td>
<td>– Extreme pruritus, friction may cause bullae</td>
</tr>
<tr>
<td>Diffuse Cutaneous Mastocytosis</td>
<td>– Doughy or boggy skin texture with lichenification and yellow hue</td>
<td>– Systemic symptoms: bronchospasm, diarrhea</td>
</tr>
<tr>
<td>Telangiectasia Macularis Eruptiva Perstans (TMEP)</td>
<td>– Persistent eruption of macules and papules with red-brown hue</td>
<td>– Rare in childhood</td>
</tr>
</tbody>
</table>

- Avoid mast cell degranulators: aspirin, alcohol, opiates, quinine, polymyxin B sulfate, amphotericin B, tubocuraine, scopolamine

2.7 TUMORS OF FAT, MUSCLE AND BONE

Lipoma
- If located over lumbosacral region at birth, consider underlying spinal dysraphism (incomplete closure of mesenchymal, osseous, and nervous tissue of the spine) → perform MRI

Associated syndromes with lipomas: Bannayan–Riley–Ruvalcaba syndrome, Gardner syndrome, MEN I
Cutaneous Calcification

- **Solitary nodular calcification**: benign nodule in infants typically from heel sticks
- **Osteoma cutis**: idiopathic or associated with Albright's hereditary osteodystrophy
- **Suppidermal calcified nodule**: solitary firm nodule on scalp or face (ears) of children

2.8 VASCULAR DISORDERS

Hemangiomas and Vascular Malformations

Hemangiomas are vascular tumors arising in infancy with true cellular proliferation, which eventually regress. Vascular malformations represent errors in vascular morphogenesis (dysplastic vessels) without true cellular proliferation and without regression.

<table>
<thead>
<tr>
<th>Vascular Tumors</th>
<th>Vascular Malformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantile and Congenital Hemangiomas</td>
<td>Capillary Malformation (slow flow): Port-Wine Stain (Nevus Flammeus)</td>
</tr>
<tr>
<td>Kaposiform Hemangioendothelioma</td>
<td>Venous Malformation (slow flow): Cavernous Hemangioma, Phlebectasia</td>
</tr>
<tr>
<td>Pyogenic Granuloma</td>
<td>Lymphatic Malformation (slow flow): Lymphangioma (Lymphangioma Circumscription Cystic Hygroma, Cavernous Lymphangioma)</td>
</tr>
<tr>
<td>Tufted Angioma</td>
<td>Arteriovenous Malformation (fast flow): Cirsoid Aneursm</td>
</tr>
<tr>
<td>Congenital Hemangiopericytoma</td>
<td>Combined Malformation (slow or fast flow)</td>
</tr>
</tbody>
</table>

A. VASCULAR TUMORS

**Hemangioma of Infancy** (Figure 2.16A)

- Benign vascular tumor presenting soon after birth (first few weeks after life)
- More common in premature infants, 15% have multiple lesions with higher risk for visceral involvement, GLUT1 positive (endothelial marker, useful in differentiating from malformation)
- Precursor lesion: pink or bruised macule or patch with surrounding telangiectasias
- **Superficial hemangioma** (strawberry hemangioma) situated in the superficial dermis and bright red in color during the proliferative phase
- **Deep or cavernous hemangioma** (located deep dermis and/or subcutis) presents as blue-purple mass with normal overlying skin, ± bruit
- Involution: 30% by age 3, 50% by age 5, 70% by age 7, 90% by age 9
- Complications: ulceration (most common), anatomic distortion with interference of normal function, high-output congestive heart failure (greater risk with visceral hemangiomas, especially if in liver)
- Regionally significant hemangiomas: periocular (obstruct vision and cause ophthalmologic complications), beard region (clue for laryngeal hemangiomatosis with airway obstruction), segmental hemangioma over lumbosacral area (MRI of spine to r/o GU/GI/spinal/skeletal abnormalities), nasal tip (textural changes and scarring)
PHACES
- Posterior fossa malformation, hemangioma, arterial anomalies, cardiac defect, coarctation of the aorta, eye abnormalities, sternal defects, and supraumbilical raphe
- Hemangiomas tend to be plaque-like on the face involving more than one dermatome
- Most common posterior fossa malformation: Dandy–Walker malformation

Diffuse Neonatal Hemangiomatosis
- Cutaneous and visceral hemangiomas; liver hemangioma may be complicated by obstructive jaundice
- If multiple cutaneous hemangiomas, perform ultrasound, urinalysis, stool guaiac, CBC to r/o systemic involvement
- If no visceral involvement → benign neonatal hemangiomatosis
- ↑ Mortality with systemic form due to high-output cardiac failure, GI bleeding, and respiratory compromise

Tufted Angioma (Figure 2.16B)
- Onset during infancy or early childhood
- Presents as ill-defined red-brown plaque or patch over neck or upper trunk; plaque slowly extends with time (typically does not regress)

PELVIS Syndrome
- Perineal hemangioma, external genital malformation, lipomyelomeningocele, vesicorenal anomalies, imperforate anus, and skin tag

Pyogenic Granuloma (Figure 2.16C)
- Presents as rapidly growing, friable red papule of skin or mucosa with frequent ulceration
- Common in children and young adults
- Associated with antecedent trauma, pregnancy, oral medications (retinoids, inidinavir, EGFR inhibitors)

Kaposiform Hemangioendothelioma (Figure 2.17A)
- Usually onset before age 2
- Presents as vascular macules, plaques, nodules, or bulging indurated masses
- Associated with Kasabach–Merritt syndrome → consumptive coagulopathy with thrombocytopenia (platelet sequestration) and purpura; deep-seated tumors (i.e., retroperitoneal) likely to cause above syndrome

Glomeruloid Hemangioma
- Distinct vascular proliferation in POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin lesions)
- Presents as firm, red-purple papules over trunk or extremities

Figure 2.16
A: Hemangioma
(Courtesy of Dr. Michelle B. Bain)
B: Tufted angioma
C: Pyogenic granuloma
B. VENOUS MALFORMATIONS

Capillary Malformation (Nevus Flammeus, Port-Wine Stain, PWS) (Figure 2.17B)
- Presents as a well-demarcated erythematous patch or plaque that grows in proportion to general growth of the body; does not spontaneously recede (unlike “salmon patches” over forehead, glabella, nose/philtrum, nape or eyelid which typically disappear by age 3)
- Facial PWS follows sensory CN V distribution (V1–V3); over time, skin changes from pink to deep purple and thickens with ↑ nodularity and pyogenic granulomas
- GLUT1 negative
- PWS can be seen with combination of epidermal or melanocytic abnormalities: phakomatosis pigmentovascularis (see below)

Phakomatosis Pigmentovascularis
- Type 1: PWS + epidermal nevus
- Type 2: PWS + dermal melanocytosis ± nevus anemicus
- Type 3: PWS + nevus spilus ± nevus anemicus
- Type 4: PWS + dermal melanocytosis + nevus spilus ± nevus anemicus

Glomangioma (Glomuvenous Malformation) (Figure 2.17C)
- Arises in children and adolescents; may be sporadic or inherited (autosomal dominant with incomplete penetrance; defect in glomulin gene)
- If solitary lesion (glomus tumor), onset typically in adulthood with subungual location
- Presents as soft pink to deep blue papules or nodules in segmental distribution; tender to palpation, ± attacks of pain with pregnancy or menstruation
- Histology: resembles vascular malformation but vessels lined with one or more rows of cuboidal glomus cells

Figure 2.17
A: Kaposiform hemangioendothelioma (in Kasabach-Merritt)
B: Port-wine stain (Reprint from Abel-Halim AW. Passing the USMLE. New York, NY: Springer; 2009)
C: Glomangiomas (Courtesy of Dr. Michelle B. Bain)
Angiokeratoma (Figure 2.18A)
- Ectasias of dermal capillaries
- Presents as a dark red to purple papule; either solitary or multiple; distribution varies by type

<table>
<thead>
<tr>
<th>Solitary Angiokeratoma</th>
<th>Single red to dark brown papule usually on the lower extremity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiokeratoma Circumscriptum</td>
<td>Large verrucous papules or plaques typically involving the extremity, onset in early childhood/infancy</td>
</tr>
<tr>
<td>Angiokeratoma of Mibelli</td>
<td>Rare, presents as several 1–5 mm dark, red-gray papules over acral areas with verrucous surface</td>
</tr>
<tr>
<td>Angiokeratoma Corporis Diffusum (Fabry Disease)</td>
<td>Numerous tiny telangiectatic red papules associated with hereditary lysosomal storage disease, XLR, ( \alpha )-galactosidase A deficiency</td>
</tr>
<tr>
<td>Angiokeratoma of the Scrotum (Fordyce)</td>
<td>Multiple small red-violaceous papules studding the scrotum, less often the vulva, onset in adulthood</td>
</tr>
</tbody>
</table>

Lymphangioma
- Uncommon congenital malformation of the lymphatic system; either superficial (lymphangioma circumscriptum) or deep-seated (cavernous lymphangioma)
- Lymphangioma circumscriptum: multiple translucent vesicles with clear lymph fluid (resembling frog spawn)
- Cystic hygroma (variant of cavernous lymphangioma): deep-seated large translucent soft mass typically over neck, axilla, or lateral chest

C. TELANGIECTASIAS

Spider Angioma (Spider Nevus) (Figure 2.18B, C)
- Common acquired lesion seen in children and adults
- Comprised of central arteriole with radiating thin walled vessels; temporary obliteration seen with compression
- Presents as bright red papule with central papule surrounded by distinct radiating vessels
- Multiple lesions associated with liver disease, pregnancy, and estrogen therapy

Angioma Serpiginosum
- Onset typically within first two decades of life
- Presents as small, red punctate asymptomatic macules in serpiginous pattern typically over extremity
2.9 GENODERMATOSES

X-Linked Recessive

- C: Chronic Granulomatous Disease
- H: Hunter Disease
- A: Anhidrotic (Hypohidrotic) Ectodermal Dysplasia (Christ-Siemens-Touraine)
- D: Dyskeratosis Congenita
- S: SCID
- Kinky: Kinky Hair Disease (Menkes Disease)
- W: Wiskott–Aldrich Syndrome
- I: Ichthyosis, X-linked
- F: Fabry Disease
- E: Ehlers–Danlos Syndrome (type V and IX)
- C: Chondrodysplasia Punctata (not Conradi–Hünermann type)
- H: Hypohidrotic ED with Immunodeficiency
- A: Agammaglobulinemia, Bruton
- N: Lesch-Nyhan Syndrome

X-Linked Dominant

- B: Bazex Syndrome (do not confuse with acrokeratosis paraneoplastica {Bazex syndrome})
- I: Incontinentia Pigmenti (Bloch-Sulzberger Syndrome)
- G: Goltz Syndrome (Focal Dermal Hypoplasia)
- C: CHILD Syndrome
- h:
- O: Oro-Facial-Digital Syndrome
- M: MIDAS Syndrome (micrognathia, dermal aplasia, sclerocornea)
- P: Chondrodysplasia Punctata (Conradi–Hünermann type)

A. SYNDROMES WITH DEFECTIVE DNA REPAIR

Xeroderma Pigmentosum (XP) (Figure 2.19A, B)

- AR, due to defect in DNA repair
- Seven complementation groups (A–G) and one XP variant described, each encoding different proteins in the nucleotide excision repair (NER) pathway (except XP variant)
- Presents with marked photosensitivity, early onset of all major skin malignancies, exaggerated sunburn following minimal sun exposure, solar lentigines by age of 2, ocular abnormalities (photophobia, keratitis, corneal opacification, vascularization), neurologic abnormalities (progressive deafness)
- XP variant (mutation in DNA polymerase): no neurologic abnormalities
- DeSanctis–Cacchione syndrome (Gr. A): severe neurologic abnormalities (MR, deafness, ataxia)

Cockayne Syndrome

- AR, defective excision repair: unable to repair cyclobutane pyrimidine dimer products after irradiation, 1 chromosomal breaks
- Two complementation groups: CS-A (ERCC8) and CS-B (ERCC6)
- Presents with photosensitivity, mental retardation, cachectic dwarfism, peripheral neuropathy, sunken eyes, prominent ears, “salt and pepper” retinitis pigmentosa, dental caries, thinning hair, basal ganglia calcification

COCKAYNE – eight letters (ERCC8), Cachectic dwarfism, Ocular (salt/pepper RP), Cataracts, Avoid sun, Ears (“mickey mouse”)
Trichothiodystrophy (PIBIDS)
- AR, mutation in gene ERCC2 (XPD protein) and ERCC3 (XPB protein) in NER pathway, sulfur deficiency in hair
- PIBIDS: Photosensitivity (50%), ichthyosis (variable severity), brittle hair (alternating bright and dark bands known as “tiger tail,” flattened hair shafts like a ribbon), intellectual impairment, decreased fertility, short stature, receding chin, protruding ears

Bloom Syndrome
- AR, BLM gene mutation, RecQ protein-like two (RecQL2, some sources say RecQL3 (Spitz)), DNA helicase family, mutation results in ↑ spontaneous sister chromatid exchanges, breakage, and rearrangements
- Presents with photodistributed erythema/telangiectasias over cheeks within first few weeks of life, short stature, normal intelligence, immune deficiency causing chronic respiratory/GI infections, ↓ fertility, ↓ IgM/IgA, high-pitched voice
- ↑ Risk cancer: leukemia, lymphoma, GI adenocarcinoma

Rothmund–Thomson Syndrome (Poikiloderma Congenitale)
(Figure 2.19C)
- AR, RECQL4 (DNA helicase)
- Presents with photodistributed erythema and vesicles on face in first few months of life, evolves into poikiloderma and extends to buttocks and extremities, premalignant acral keratoses, alopecia, cataracts, hypoplastic thumbs/radii/ulnae, ↑ risk osteosarcoma, normal intelligence

Dyskeratosis Congenita (Zinsser-Engman-Cole Syndrome)
- Two forms: XLR and AD
- XLR, DKC1 gene mutation, encodes protein dyskerin (interacts with telomerase), ↑ sister chromatid exchanges
- AD, hTR (human telomerase RNA component) and hTERT (human telomerase reverse transcriptase) mutations
- Cutaneous poikiloderma (face, trunk, thighs), nail dystrophy (atrophy, pterygium), premalignant leukoplakia (buccal mucosa most common), frictional bullae, palmpoplantar hyperhidrosis
- Bone marrow failure with anemia, thrombocytopenia, or pancytopenia → major cause of mortality
- ↑ CA: mucosal SCC, Hodgkin’s lymphoma, AML

Ataxia-Telangiectasia Syndrome (Figure 2.20A)
- AR, ATM gene mutation, inability to repair chromosomal strand breaks, sensitivity to ionizing radiation
- Presents first with ataxia (2–3 years old) → telangiectasias on bulbar conjunctiva (spreads to cheeks/ears), premature aging (atrophic/sclerotic face), ↓ Purkinje fibers in cerebellum
- Defects in cellular and humoral immunity (↓ IgA, IgG, IgE), severe and frequent sinopulmonary infections, ↑ lymphoreticular malignancy, ↑ breast CA

**Fanconi Syndrome**
- AR, ↑ chromosomal breakage
- Presents with diffuse hyperpigmentation, multiple CALMs, pancytopenia, ↑ SCC, ↑ solid organ CA, ↑ leukemia, hypoplasia of radius/thumb

**B. SYNDROMES OF TUMOR SUPPRESSION**

**Basal Cell Nevus Syndrome (Gorlin Syndrome)** (Figure 2.20B, C)
- AD, PTCH (PATCHED) gene, inhibits sonic hedgehog signaling (unbound PTCH inhibits Smoothened (SMO) signaling; when inactivating mutation occurs in PTCH → repression of SMO removed → constitutive activation of Gli and downstream targets)
- Presents with numerous BCCs, palmar/plantar pits, odontogenic keratocysts of jaw, characteristic facies (frontal bossing, hypertelorism), cataracts, glaucoma, bifi d ribs, calcification of falx cerebrum, agenesis of corpus callosum, ovarian fibromas, medulloblastoma, meningioma

**Neurofibromatosis, Type I (Von Recklinghausen Disease)** (Figure 2.21A–C)
- AD, NF-1 gene, encodes neurofibromin (tumor suppressor protein)
- Criteria: two or more of the following six:

| Six or more CALMs or two or more neurofibromas or one plexiform neurofibroma | Café au lait macule (CALM): > 0.5 cm prepubertal, >1.5 cm postpubertal |
| Axillary or inguinal freckling (Crowe’s sign) |
| Optic glioma |
| Lisch nodules |
| Sphenoid wing dysplasia or thinning cortex of long bone |
| First degree relative with NF |

- ↑ Risk of tumors: optic glioma, malignant peripheral nerve sheath tumor, neurosarcoma, juvenile myelomonocytic leukemia, rhabdomyosarcoma
- ± Hypertension, mental retardation (MR), seizures, kyphoscoliosis, endocrine disorder (precocious puberty, acromegaly, thyroid/parathyroid abnormalities)

**Neurofibromatosis, Type II (Bilateral Acoustic NF)**
- AD, NF-2 gene, encodes merlin/schwannomin
- Diagnosis requires bilateral CNVII masses OR first degree relative AND either unilateral CN VIII mass OR two of the following: schwannoma, optic glioma, meningioma, juvenile posterior subcapsular opacity

**Carney Syndrome (NAME or LAMB Syndrome)**
- AD, PRKAR1A gene

---

*Figure 2.21
A: CALMs*
B: Neurofibromatosis*
C: Neurofibromatosis*
*Courtesy of Dr. Paul Getz*
• Presents with ephelides, blue nevi, lentigines, cutaneous myxomas (flesh-colored papules over ears, eyelids, nipples), primary pigmented nodular adrenocortical disease (results in Cushing syndrome)
• Tumors: testicular tumors, pituitary GH-secreting tumors, psammomatous melanotic schwannomas

**NAME**: nevi, atrial myxoma, myxoid tumors, ephelides
**LAMB**: lentigines, atrial myxomas, mucocutaneous myxomas, blue nevi

**Muir–Torre Syndrome**
• AD, mutation in MLH1 and MSH2 (DNA mismatch repair genes) causing microsatellite instability
• Multiple sebaceous neoplasms and keratoacanthomas
• ↑ Risk of colon adenocarcinoma, less common GU, lung, breast or heme malignancy

*Muir–Torre: think of “more” and more sebaceous neoplasms*

**Tuberous Sclerosis** (*Figure 2.22A, B*)
• AD, TSC1 gene mutation (hamartin), and TSC2 (tuberin)
• Ash-leaf macules (earliest finding), facial angiofibromas, connective tissue nevi (shagreen patch), fibromas (gingival and subungual), CALMs, dental enamel pits
• Renal angiomyolipomas, retinal hamartomas, seizures, pulmonary lymphangioleiomyomatosis, cortical tubers, cardiac rhabdomyoma

**Cowden Syndrome (Multiple Hamartoma Syndrome)** (*Figure 2.22C*)
• AD, PTEN gene mutation, encodes tyrosine phosphatase protein, mutation causes cell proliferation
• Trichilemmomas (smooth to verrucous small papules on face), “cobblestone” appearance of the mucosa including tongue (oral papillomas), acral keratotic papules
• ↑ Breast fibroadenoma, ↑ CA: breast, thyroid follicular; GI polyps

**Multiple Endocrine Neoplasia (MEN)**

<table>
<thead>
<tr>
<th>Type 1 (Wermer Syndrome)</th>
<th>– AD, MEN1 mutation (menin: tumor suppressor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Angiofibromas, collagenomas, lipomas, CALMs</td>
<td></td>
</tr>
<tr>
<td>– Pituitary, parathyroid, pancreatic tumors</td>
<td></td>
</tr>
<tr>
<td>Type 2a (Sipple Syndrome)</td>
<td>– AD, RET mutation (tyrosine kinase receptor)</td>
</tr>
<tr>
<td>– Lichen or macular amyloidosis, hemangiomas, genital lentigines, hamartomas, lipomas</td>
<td></td>
</tr>
<tr>
<td>– Parathyroid tumor, thyroid medullary carcinoma, pheochromocytoma</td>
<td></td>
</tr>
<tr>
<td>Type 2B (Multiple Mucosal Neuroma Syndrome)</td>
<td>– AD, RET mutation</td>
</tr>
<tr>
<td>– Multiple mucosal neuromas, thickened lips</td>
<td></td>
</tr>
<tr>
<td>– Thyroid medullary carcinoma, pheochromocytoma, marfanoid habitus, diffuse ganglieneuromatosis (megacolon, diarrhea)</td>
<td></td>
</tr>
</tbody>
</table>

**MEN 1**: 3 P’s (pituitary, pancreas, parathyroid) + CALMs
**MEN 2A**: Amyloidosis (“sipple” syndrome: think “rippled” macular amyloid)
**MEN2B**: Blubbery lips due to mucosal neuromas

---

*Figure 2.22*
A: Angiofibromas in TS
(Courtesy of Dr. Michelle B. Bain)
B: Koenen tumor in TS
(Courtesy of Dr. Paul Getz)
C: Cowden syndrome
Bannayan–Riley–Ruvalcaba Syndrome
- AD, PTEN mutation
- Genital lentigines, hamartomas, lipomas, hemangiomas, mental retardation, macrocephaly

Bannayan – think of an old banana with dark spots on the outside resembling lentigines

LEOPARD Syndrome (Multiple Lentigines Syndrome)
- AD, PTPN11 gene mutation, encodes tyrosine phosphatase Shp2
- Lentigines, ECG abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retarded growth and deafness
- Multiple lentigines at birth/early infancy (sun exposed and protected areas, including genitalia, hands, feet)

Peutz–Jeghers Syndrome (Figure 2.23A)
- AD, STK11/LKB1 gene mutation, encodes serine-threonine kinase tumor suppressor
- Hyperpigmented macules on lip/oral mucosa/fingers (starts in infancy/early childhood) and intestinal polyposis (± bleeding, intussusception)
- ↑ GI adenocarcinoma, ↑ other solid organ malignancies

PeutZ(S) Jeghers – Threonine Serine kinase

Gardner Syndrome
- AD, APC gene encoding tumor suppressor gene (ras proto-oncogene)
- Cutaneous epidermoid cysts, osteomas (mandible, maxilla), supernumerary teeth, odontomas, fibromas, congenital hypertrophy of the retinal pigment epithelium (CHRPE)
- Tumors: GI adenocarcinoma (inevitable), osteochondromas, thyroid papillary carcinoma, hepatoblastoma, adrenal adenomas

Gardner – birds CHiRP in the GARDen

Birt–Hogg–Dubé Syndrome (Figure 2.23B, C)
- AD, BHD gene (encodes folliculin)
- Multiple fibrofolliculomas, trichodiscomas, acrochordons on the face, scalp, neck, and upper trunk
- Associated with renal cell carcinoma, medullary carcinoma of thyroid, spontaneous pneumothorax (multiple pulmonary cysts)

Birt HOGG Dube – think of a hog with rough textured skin (because of fibrofolliculomas and trichodiscomas)

Dysplastic Nevus Syndrome
- AD, CDKN2A (p16 tumor suppressor gene, inhibits cyclin-dependent kinase 4 [CDK4])
- Dysplastic nevi, melanoma, pancreatic CA, astrocytomas

Figure 2.23
A: Peutz–Jeghers syndrome
(Courtesy of Dr. Paul Getz)
B: Birt–Hogg–Dube syndrome*
C: Birt–Hogg–Dube syndrome*
C. SYNDROMES WITH PREMATURE AGING

Werner Syndrome (Adult Progeria) (Figure 2.24A)
- AR, RECQL2 gene mutation (WRN gene), encodes RecQ DNA helicase, genomic instability (↑ aging/cancer)
- Normal growth until second decade, then short stature/thin limbs, graying of hair in adolescence, central obesity, pinched facial expression, beaked nose, micrognathia, high-pitched voice, mottled hyperpigmentation, sclerodermoid changes, cataracts, diabetes mellitus, premature atherosclerosis, chronic leg ulcers
- ↑ Soft tissue sarcomas, osteosarcomas, SCCs

Werner – W (recql2)

Progeria (Hutchinson–Gilford Syndrome) (Figure 2.24B)
- AD, lamin A gene mutation (LMNA), encodes lamin A and lamin C (nuclear envelope protein)
- Markedly premature aging (median lifespan 12 years), large appearing cranium, frontal bossing, prominent scalp veins, beaked nose, micrognathia, “plucked bird” appearance, loss of subcutaneous tissue, sclerodermoid skin; alopecia, high pitched voice, average intelligence, severe premature coronary atherosclerosis

D. DISORDERS WITH IMMUNODEFICIENCY

Familial Chronic Mucocutaneous Candidiasis (FCMC)
- Recurrent, progressive candidal infections (skin, nails, and mucosa) presenting with recurrent oral thrush, nail dystrophy, crusted cutaneous plaques

Hyper-IgE Syndrome (Job Syndrome) (Figure 2.24C)
- AD, mutation in gene encoding STAT3 (signal transducer and activator of transcription 3), AR (gene encoding tyrosine kinase 2 TYK2)
- ↑ IgE levels, peripheral eosinophilia, cold abscesses, coarse facies, eczematous dermatitis, lung abscesses, pneumonia, retained primary teeth, pneumatocele, otitis media, osteopenia with recurrent fractures

Figure 2.24
A: Werner syndrome
(Reprint from Baykal C, Yazganoglu KD. Dermatological Diseases of the Nose and Ears. Berlin: Springer; 2010)
B: Progeria
(Courtesy of the Howard family)
C: Hyper-IgE syndrome
Wiskott–Aldrich Syndrome (WAS)
- XLR, WASP gene, encodes WAS protein (controls assembly of actin filaments)
- Thrombocytopenia and platelet dysfunction (since birth) → petechiae and ecchymoses of skin, epistaxis, melena, hematemeses, hematuria
- Atopic dermatitis (face, scalp, flexures), excoriated areas with crust/petechiae, recurrent bacterial infections
- Hepatosplenomegaly, lymphadenopathy, ↑ lymphoma (non-Hodgkin’s lymphoma)
- Death from infections > hemorrhage > malignancy
- Treatment: bone marrow transplantation

Severe Combined Immunodeficiency (SCID)
- XLR, deficiency of γ chain of IL2 receptor (IL2RG); AR, defect in tyrosine kinase JAK3 or adenosine deaminase (ADA); heterogeneous disorders with severely impaired humoral and cellular immunity
- Deficiency or total absence of circulating lymphocytes

Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED)
- AR, AIRE gene (autoimmune regulator gene) mutation
- Candidal infections, endocrinopathy (thyroid/parathyroid abnormality, diabetes mellitus, hypoadrenocorticism), cutaneous and other autoimmune disorder (alopecia areata, vitiligo, pernicious anemia)
- Varied cutaneous presentations: seborrheic-like dermatitis or morbilliform eruption, recurrent candidiasis and bacterial infections, chronic diarrhea, failure to thrive

E. DISORDERS OF PIGMENTATION

Oculocutaneous Albinism (OCA) (Figure 2.25A)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inheritance/Defect</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCA, Type 1a (Tyrosinase-negative)</td>
<td>AR TYR (Tyrosinase enzyme deficiency)</td>
<td>No melanin in skin/hair/eyes, white hair (over time may turn slightly yellow), milky white-pink skin, blue-gray eyes, amelanotic nevi (pink), extreme UV sensitivity, ↑ skin CA, nystagmus, strabismus, ↓ visual acuity</td>
</tr>
<tr>
<td>OCA, Type 1b (Yellow mutant)</td>
<td>AR TYR</td>
<td>↓ Tyrosinase activity, little or no pigment at birth, develop some pigment over time, milder eye findings</td>
</tr>
<tr>
<td>OCA, Type 2 (Tyrosinase-positive)</td>
<td>AR P gene (↓ Eumelanin synthesis)</td>
<td>Most common OCA, broad clinical phenotype (minimal to moderate dilution), pigmented nevi develop over time, light brown hair/skin</td>
</tr>
<tr>
<td>OCA, Type 3 (Rufous)</td>
<td>AR TYRP-1 (Tyrosinase-related protein 1)</td>
<td>Light brown hair/skin, blue or brown irides, nystagmus, ↓ visual acuity</td>
</tr>
</tbody>
</table>

Figure 2.25
A: Oculocutaneous albinism
(Bourtesy of Dr. Paul Getz)
B: Hypomelanosis of Ito
C: Incontinentia pigmenti
Chédiak–Higashi Syndrome
- AR, LYST/CHS1 gene mutation (lysosomal trafficking regulator), defect in vesicle trafficking
- Giant intracytoplasmic granules (involving melanocytes, platelets, leukocytes)
- Onset at infancy: oculocutaneous albinism with immunologic deficiency, silvery metallic hair (clumps of melanin microscopically), recurrent infections, easy bruising, progressive neurologic deterioration, giant lysosomal granules, slate-gray skin color
- “Accelerated phase”: pancytopenia, lymphohistiocytic infiltration of reticuloendothelial system
- Treatment: stem cell transplantation

Hermansky–Pudlak Syndrome
- AR, HPS gene mutation (lysosomal transport protein) or AP3B1 (formation of vesicles and protein trafficking)
- Oculocutaneous albinism, hemorrhagic diathesis (absent dense bodies in platelets) with epistaxis, ecchymosis, menorrhagia, pulmonary fibrosis, granulomatous colitis, renal failure, cardiomyopathy

Griscelli Syndrome
- AR, myosin Va or Rab27a gene mutation, encodes GTPase (ras family)
- Variable pigmentary dilution, silvery metallic hair, recurrent pyogenic infections, pancytopenia, neurologic involvement, immunodeficiency
- Uneven clumps of melanin in medulla on microscopy of hair; giant melanosomes NOT seen

Hypomelanosis of Ito (Figure 2.25B)
- Sporadic, due to somatic mosaicism
- Onset at birth/early childhood, whorled/linear/patchy hypopigmentation (unilateral or bilateral) following lines of Blaschko; ± CNS, eye, skeletal, or tooth abnormalities

Incontinentia Pigmenti (Bloch–Sulzberger Syndrome) (Figure 2.25C)
- XLD, NEMO gene mutation (NFκβ essential modulator), lethal in males; cutaneous lesions follow lines of Blaschko
- Four stages:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicular stage</td>
<td>vesicles in linear/whorled streaks</td>
</tr>
<tr>
<td>Verrucous stage</td>
<td>hyperkeratotic linear plaques</td>
</tr>
<tr>
<td>Hyperpigmented</td>
<td>linear/whorled hyperpigmentation</td>
</tr>
<tr>
<td>Hypopigmented</td>
<td>hypopigmented thin streaks</td>
</tr>
</tbody>
</table>

- Associated with patchy scarring alopecia, absent or peg-shaped teeth, CNS abnormalities (seizures, delayed psychomotor development), ocular disease (retinal vascular abnormalities, blindness)

Piebaldism
- AD, c-kit gene mutation (proto-oncogene, tyrosine-kinase receptor family), defective melanocyte migration and development
- White forelock, irregularly shaped leukoderma favoring anterior trunk, extremities, forehead (leukoderma spares hands, feet, hips, shoulders), otherwise healthy
Waardenburg Syndrome (Figure 2.26A)
- Four types below:

<table>
<thead>
<tr>
<th>Type</th>
<th>Inh</th>
<th>Defect</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS, Type 1</td>
<td>AD</td>
<td>PAX3 (transcription factor)</td>
<td>White forelock, leukoderma, heterochromia iridis, synophrys, dystopia canthorum (characteristic), broad nasal root, deafness uncommon</td>
</tr>
<tr>
<td>WS, Type 2</td>
<td>AD</td>
<td>MITF (transcription factor)</td>
<td>Similar to WS1 but dystopia canthorum absent, deafness common</td>
</tr>
<tr>
<td>WS, Type 3</td>
<td>AD</td>
<td>PAX3</td>
<td>Similar to WS1 + upper limb abnormalities (hypoplasia, syndactyly, flexion contractures)</td>
</tr>
<tr>
<td>WS, Type 4</td>
<td>AD</td>
<td>SOX10 (TF) EDN3 (endothelin-3) EDNRB (endothelin receptor)</td>
<td>Similar to WS1 + Hirschsprung disease, deafness common</td>
</tr>
</tbody>
</table>

F. DISORDERS WITH PIGMENTED LESIONS

McCune–Albright Syndrome (Polyostotic Fibrous Dysplasia)
- Sporadic, GNAS1 gene mutation, encodes α subunit of Gs adenylate cyclase
- Large café-au-lait macules (geographic border), precocious puberty, pathological fractures, endocrine abnormalities (hyperparathyroidism, hyperthyroidism, acromegaly), sclerosis at base of skull

Russell–Silver Syndrome (Figure 2.26B)
- Presents with triangular facies, hemihypertrophy, clinodactyly of the fifth finger, syndactyly of second/third toes

G. VASCULAR DISORDERS

Sturge–Weber Syndrome (SWS) (Figure 2.27A)
- Sporadic neurologic disorder, facial PWS associated with ipsilateral ocular and leptomeningeal anomalies
- Facial PWS typically involves V1 distribution (can be more extensive or bilateral), congenital or acquired ocular abnormalities (glaucoma), neurologic abnormalities (seizures, motor dysfunction, mental retardation), intracranial “tram-track” calcification
- 10–15% patients with PWS of V1 distribution have underlying SWS

Klippel–Trénaunay Syndrome (KTS) (Figure 2.27B, C)
- Sporadic, vascular malformation of a limb associated with bone and soft tissue hypertrophy of the affected extremity with lymphatic and deep venous insufficiency
- Gigantism of the involved limb; may become painful and edematous, even ulcerate, ± recurrent cellulitis

Figure 2.27
A: Sturge–Weber syndrome
B: Klippel–Trénaunay syndrome
(Courtesy of Dr. Michelle B. Bain)
C: Klippel–Trénaunay syndrome
(Courtesy of Dr Michelle B. Bain)
• Can also have urinary/GI vascular lesions, less frequently can have intermittent claudication, venous ulcers, lymphedema, recurrent pulmonary emboli
• If multiple arteriovenous fistulas associated with skeletal and soft tissue hypertrophy → Parkes Weber syndrome

**Proteus Syndrome**
• Sporadic, mosaic mutation in PTEN
• Named after the Greek god, Proteus, who could change his shape at will (due to dramatic variation in manifestations of syndrome)
• Cutaneous findings: hyperkeratotic epidermal nevi, palmoplantar cerebriform connective tissue nevi, capillary malformation, hemangiomas, lipomas
• Systemic findings: asymmetric growth with partial gigantism of hands/feet, hyperostoses of epiphyses and skull (especially external auditory canal), bilateral ovarian cystadenomas

**Cobb Syndrome**
• Rare, nonfamilial disorder with capillary malformation on the posterior trunk in association with spinal arteriovenous malformation (most common intramedullary)
• Kyphoscoliosis common, spinal AVM can cause neurologic deficits and can affect vertebral body (pain, weakness, muscular atrophy)

**Von Hippel–Lindau Syndrome (VHL)**
• AD, VHL gene (tumor suppressor)
• Bilateral retinal/cerebellar hemangioblastomas, PWS rarely of face, ↑ renal and pancreatic CA, pheochromocytoma, progressive and fatal by age 40

**Beckwith–Wiedemann Syndrome**
• AD, KIP2 gene (inhibitor of G1 cyclin)
• Circular depression over rim of helices, linear earlobe crease, facial vascular malformation, macroGLOSSia, visceromegaly, hemihypertrophy of tissue/viscera with associated Wilms tumor and hepatoblastoma

**Rubinstein–Taybi Syndrome (Figure 2.28A)**
• Sporadic, CREB binding protein
• Vascular malformation, broad thumbs, beaked nose, mental retardation, congenital heart defects, cryptorchidism

**Mafucci Syndrome**
• Sporadic, PTH/PTHrP type I receptor
• Venous malformations (superficial/deep) of hands/feet, benign enchondromas (benign cartilaginous tumor), ↑ risk of chondrosarcomas within enchondromas and other less common sarcomas; angiosarcomas usually fatal

---

**Figure 2.28**
A: Rubinstein–Taybi syndrome
B: Blue rubber bleb syndrome (Courtesy of Dr. Michelle B. Bain)
C: Cornelia de Lange syndrome (Courtesy of Dr. Karen Bryson)
Blue Rubber Bleb Nevus Syndrome (Bean Syndrome) (Figure 2.28B)
- Sporadic (sometimes AD), TIE2 gene mutation (tyrosine kinase activating mutation)
- Multiple tender cutaneous and GI venous malformations
- Presents with compressible, blue papulonodules on trunk/arms, painful with ↑ lesional hyperhidrosis, + nocturnal pain characteristic, GI malformations can cause GI bleeding, intussusception

Cornelia de Lange Syndrome (Figure 2.28C)
- AD, but mainly sporadic, NIPBL (nipped-beta-like gene)
- Cutis marmorata, synophrys, trichomegaly, craniofacial abnormalities, MR, deafness, low-pitched cry, clinodactyly

Hereditary Hemorrhagic Telangiectasia (Osler–Weber–Rendu) (Figure 2.29A, B)
- AD, HHT1 (endoglin), and HHT2 (ALK1) gene mutation
- Multiple mucocutaneous and GI telangiectasias: epistaxis, telangiectasis (skin/mucosa), GI bleeding, pulmonary arteriovenous malformations

Hereditary Lymphedema (Milroy Disease)
- AD, FLT4 gene mutation, encodes VEGF receptor-3 (tyrosine kinase R in lymphatic vessels)
- Congenital lymphedema, chylous ascites, ± cystic hygroma

Lymphedema–Distichiasis Syndrome
- AD, FOXC2 mutation, encodes transcription factor
- Late-onset lymphedema, double row of eyelashes (distichiasis), ± trichiasis

Noonan Syndrome
- AD, PTPN11 gene, encodes protein tyrosine phosphatase SHP2
- Webbed neck (mimics Turner syndrome), characteristic facies (hypertelorism), undescended testicles, low posterior neck hairline, pulmonary stenosis, lymphedema, keloid formation, KP atrophicans (ulerythema of the eyebrows)

Turner Syndrome
- XO genotype
- Webbed neck, low posterior hairline, congenital lymphedema, abnormal sexual development, primary amenorrhea, aortic coarctation

Meige Lymphedema (Hereditary Lymphedema II)
- Late-onset lymphedema (around puberty)

H. DERMAL DISORDERS

Osteogenesis Imperfecta (OI)
- AD/AR, mutation in type I collagen gene (α1 and α2 chains)
- Decreased elasticity, easy bruising, hearing loss secondary to otosclerosis, mitral valve prolapse
- Type I: fractures, bowing, kyphoscoliosis
- Type II (severe): beaded ribs, crumpled humeri, abducted thighs

Ehlers–Danlos Syndrome (Figure 2.29C, Table 2-5)
Table 2-5 Classification of Ehlers–Danlos Syndrome (EDS)

<table>
<thead>
<tr>
<th>EDS Type</th>
<th>Traditional Classification</th>
<th>Inh</th>
<th>Gene Defect</th>
<th>Clinical Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic</td>
<td>I (Gravis)</td>
<td>AD</td>
<td>COL5A1 or COL5A2 (Type V collagen)</td>
<td>Hypertextensible skin, joint laxity, skin fragility with fish-mouth scars and cigarette paper texture, + Gorlin sign (touch tip of nose with tongue), absence of frenalum (inferior labial or lingual), molluscid pseudotumors (spongy tumors over scars/pressure points), ± mitral valve prolapse, ± premature rupture of membranes in labor (Type I)</td>
</tr>
<tr>
<td></td>
<td>II (Mitis)</td>
<td>(AR)</td>
<td>(Tenascin X deficiency)</td>
<td></td>
</tr>
<tr>
<td>Hypermobility</td>
<td>III (Benign hypermobile)</td>
<td>AD</td>
<td>TNXB (Tenascin X in 10%)</td>
<td>Striking joint hypextensibility (subluxations/dislocations), minimal skin involvement, degenerative joint disease</td>
</tr>
<tr>
<td>Vascular</td>
<td>IV (Arterial-ecchymotic)</td>
<td>AD</td>
<td>COL3A1 (Type III collagen)</td>
<td>Thin translucent skin, visible veins under skin, vascular fragility (arterial, GI, uterine rupture), extensive bruising, hypermobility of small joints (hands/feet)</td>
</tr>
<tr>
<td>Kyphoscoliosis</td>
<td>VI</td>
<td>AR</td>
<td>PLOD (Lysyl hydroxylase)</td>
<td>Kyphoscoliosis, respiratory problems, muscle weakness, joint laxity, ocular fragility (glaucoma, retinal detachment)</td>
</tr>
<tr>
<td>Arthrochalasia</td>
<td>VIIA, VIIB</td>
<td>AD</td>
<td>COL1A1 or COL1A2 (Type I collagen)</td>
<td>Marked joint hypermobility with moderate cutaneous elasticity, dislocation of large joints (bilateral congenital hip dislocations), scoliosis, easy bruising</td>
</tr>
<tr>
<td>Dermatosparaxis</td>
<td>VIIC</td>
<td>AR</td>
<td>ADAMTS2 (Procollagen N-proteinase)</td>
<td>Extremely fragile and sagging skin, easy bruising, hernias</td>
</tr>
<tr>
<td>Other</td>
<td>V, VIII, X</td>
<td></td>
<td></td>
<td>Of note, type IX reclassified as occipital horn syndrome, allelic with Menkes disease (ATP7A, lysl oxidase defect)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Type XI reclassified as familial joint hypermobility syndrome (new type X)</td>
</tr>
<tr>
<td>V</td>
<td>XLR</td>
<td></td>
<td></td>
<td>Hypertextensible skin, orthopedic abnormalities, bruising</td>
</tr>
<tr>
<td>VIII</td>
<td>AD</td>
<td>?</td>
<td></td>
<td>Periodontitis + EDS I/II findings</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Bruising, joint hypermobility</td>
</tr>
<tr>
<td>EDS, cardiac valvular</td>
<td>AR</td>
<td></td>
<td>Collagen I (α2 chain)</td>
<td>Heart valve defects + EDS I findings</td>
</tr>
<tr>
<td>EDS, progeroid</td>
<td>AR</td>
<td></td>
<td>B4GALT7 (Galactosyl transferase 1)</td>
<td>Progeroid facies, osteopenia, MR, growth retardation, skin hypextensibility, joint hypermobility</td>
</tr>
</tbody>
</table>

Marfan Syndrome
- AD, fibrillin 1 and 2 defect
- Tall stature, ectopia lentis (upward dislocation), myopia, arachnodactyly, long limbs, aortic dilation with rupture, mitral valve prolapse (MVP), striae, elastosis perforans serpiginosa (EPS); death from cardiac complications
Pseudoxanthoma Elasticum (PXE) (Figure 2.30A)
- AR (most common) or AD, ABCC6 gene mutation (transmembrane transporter gene)
- Fragmented/calcified elastin of skin/eyes/arteries, “plucked chicken” skin on flexures, angiod streaks (rupture in Bruch’s membrane) with retinal hemorrhage, gastric artery hemorrhage, MVP, hypertension, myocardial infarction

Cutis Laxa
- AR, FBLN5 gene, fibrillin 5, AD (elastin gene and FBLN5), XLR (ATP7A gene)
- Presents with loose, pendulous skin (inelastic), arterial rupture, lung abnormalities, visceral diverticulae/hernia, joint dislocation, pulmonary emphysema (AR inheritance), newborn with hypoplastic lungs
- Acquired form: Marshall syndrome

Congenital Contractural Arachnodactyly
- AD, fibrillin 2, crumpled ears, long limbs, arachnodactyly

Focal Dermal Hypoplasia (Goltz Syndrome) (Figure 2.30B, C)
- XLD, lethal in males
- Presents with linear atrophy following Blaschko’s lines following areas of fat herniation, osteophtia striata, colobomas, oral papillomas, lobster claw deformity of hands, syndactyly, alopecia, notched nasal ala

Goltz – think of a lobster using its claw along the sand causing linear striaations (osteophtia striata)

Berardinelli–Seip Congenital Lipodystrophy
- BSCL2 gene mutation (nuclear lamins)
- Generalized lipodystrophy, hyperlipemia, acanthosis nigricans, insulin-resistant DM, hepatomegaly

Familial Partial Lipodystrophy
- AD, LMNA gene mutation (lamin A/C)
- Symmetric lipodrophathy of trunk/limbs, tuberoeruptive xanthomas, acanthosis nigricans, hypertriglyceridemia

Buschke–Ollendorf Syndrome (Figure 2.31A, B)
- AD, LEMD3 (MAN1) gene mutation, encodes inner nuclear membrane protein
- Elastomas (dermatofibrosis lenticularis disseminata) presenting as yellow papules involving trunk, buttocks, arms, and osteopoikilosis (ectopic calcifications in bone), not prone to fracture

BUSHke – think of small bush-like opaque areas within the bone (osteopoikilosis)
Lipoid Proteinosis (Urbache–Wiethe Disease)
- AR, ECM1 gene mutation (extracellular matrix protein 1)
- “String of pearls” over eyelids, hoarse voice, bean-shaped temporal/hippocampal calcification (with occasional seizures), large wooden tongue, waxy yellow papules of face/oropharynx

Beare-Stevenson Cutis Gyrata Syndrome (Figure 2.31C)
- FGFR2 gene mutation (fibroblast growth factor receptor 2)
- Cutis gyrata, acanthosis nigricans, anogenital anomalies, craniosynostosis, furrowed palms/soles

I. DISEASES OF THE HAIR AND NAILS

Menkes Disease
- XLR, ATP7A mutation, encodes ATP-dependent copper transporter
- ↓ Serum copper levels, pili torti (most common), trichorrhexis nodosa, short brittle “steel wool” hair, sparse eyelashes/eyebrows, cupid’s bow upper lip, progressive CNS deterioration, seizures, tortuous arteries

Monilethrix
- AD, human hair keratin hHb1 and hHb6
- Beaded hair with elliptical nodes along hair shaft, keratosis pilaris

Monilethrix – think of trix cereal and each piece as an elliptical node causing a beaded appearance

Trichorhinophalangeal Syndrome
- AR/AD, TRPS1 gene
- Sparse hair, pear-shaped nose, cone-shaped epiphyses

Trichorhinophalangeal (TRP) – think of TRiPping so many times that your nose becomes pear-shaped

Uncombable Hair Syndrome (Figure 2.32A)
- AD, AR or sporadic
- Pili trianguli et canaliculi (triangular cross-sectional appearance, longitudinal groove), blonde “spun glass” hair
- Possible improvement with biotin

Tricho-dento-osseous Syndrome
- AD, DLX3 homeobox gene, curly/kinky hair at birth (may straighten after puberty), dental pits, ↑ bone density

Björnstad Syndrome
- AR, pili torti, deafness, normal intelligence and lifespan
Papular Atrichia
- AR, human homolog of mouse hairless gene mutation
- Loss of natal hair with subsequent generalized atrichia

Nail–Patella Syndrome (Figure 2.32B)
- AD, LMX1B mutation
- Triangular lunulae, absent/hypoplastic patella, posterior iliac horns, thickened scapulae, glomerulonephritis, Lester iris (hyperpigmented papillary margin of iris), radial head subluxation

PATELLa – Posterior iliac horns, Absent patella, Thickened scapula, Eye ( Lester iris), Lunulae (triangular), glomerulonephritis

Pachyonychia Congenita
- Mainly AD, K6a/16 mutation (type I), K6b/17 (type II)

<table>
<thead>
<tr>
<th>Jadassohn–Lewandowsky (Type I)</th>
<th>Jackson–Lawler (Type II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dystrophic nails, palmoplantar keratoderma (PPK), oral leukokeratosis (benign)</td>
<td>Dystrophic nails, PPK, steatocystomas, epidermal cysts, natal teeth</td>
</tr>
</tbody>
</table>

J. DISORDERS OF CORNIFICATION

Ichthyosis Vulgaris (IV) (Figure 2.32C)
- AD, decreased/absent profilaggin (keratohyalin granules)
- Presents few months after birth to early childhood with fine, white scales on extensor surfaces; flexures spared, hyperlinear palms/soles, atopic diathesis
- Histology: attenuated/absent granular layer, retention hyperkeratosis
- Acquired form of IV associated with internal disease, malignancies, and some medications

Figure 2.32
A: Uncombable hair syndrome
B: Triangular lunulae (NPS)
(Reprint from Tosti A, Ralph DC, Piraccini BM, Iorio M. Color Atlas of Nails. Heidelberg: Springer; 2010)
C: Ichthyosis vulgaris
(Courtesy of Dr. Paul Getz)
X-linked Ichthyosis (XLI)
- XLR, defect in steroid sulfatase (STS, arylsulfatase C)
- Presents around infancy with mild erythroderma and large translucent scales → evolves into adherent brown “dirty” scales over extremities, trunk, neck; variable involvement of flexures, sparing of palms/soles/face
- Mother (with affected fetus): low/absent estrogen in urine/amniotic fluid → labor fails to progress
- Other associations: comma-shaped corneal opacities, cryptorchidism (↑ risk of testicular CA)
- Histology: hyperkeratosis or parakeratosis overlying normal or slightly thickened granular layer
- Tests: serum lipoprotein electrophoresis (detects accumulation of cholesterol sulfate)

Lamellar Ichthyosis (Nonbullous Congenital Ichthyosiform Erythroderma, Nonbullous CIE) (Figure 2.33A–C)
- AR, mutation in TGM1 gene (transglutaminase deficiency) or ABCA12 mutation (ATP binding cassette A12)
- Presents at birth with collodion membrane with underlying erythroderma → evolves to thick, dark scales with prominent flexural involvement; no improvement with age
- Associated ectropion, eclabium, scarring alopecia
- PPK, heat intolerance (heat stroke), hypernatremia
- Histology: massive orthokeratotic hyperkeratosis, acanthosis

Congenital Ichthyosiform Erythroderma (Nonbullous CIE)
- AR (some AD), TGM1 gene, few ALOXE3 or ALOX12B gene mutation (encode lipoxygenase 3 and 12R-lipoxygenase, respectively)
- Presents at birth with collodion membrane → generalized erythroderma and persistent scaling, flexures involved, PPK; no improvement with age
- Associated scarring alopecia, ectropion, nail dystrophy (similar to LI but milder), heat intolerance

Ichthyosis Bullosa of Siemens
- AD, keratin 2e (K2) gene defect
- Presents at birth with mild erythroderma and mild blistering → evolves into brown hyperkeratotic plaques over joints, flexures, dorsal hands and feet; spares palms/soles

Figure 2.33
A: Lamellar ichthyosis*
B: Lamellar ichthyosis*
C: Lamellar ichthyosis*
* Courtesy of Dr. Paul Getz
Epidermolytic Hyperkeratosis (EHK or Bullous CIE) (Figure 2.34A–C)
- AD, keratin 1 and keratin 10 gene mutations
- Presents at birth with initial erythroderma, bullae, denuded skin → evolves into verrucous hyperkeratotic plaques, flexural involvement, PPK
- Histology: massive orthokeratotic hyperkeratosis, hypergranulosis, cytolysis of suprabasal/granular layers, clumped tonofilaments (keratin intermediate filaments)
- Failure to thrive, hypernatremic dehydration, recurrent infections (bronchopneumonia, sepsis)

Harlequin Ichthyosis
- AR, ABCA12 mutation (ATP binding cassette A12)
- Presents at birth with encasement of hard, thickened restrictive stratum corneum with severe ectropion, eclairbium, mitten-like hands and feet
- Death within few days of birth due to respiratory difficulties and sepsis
- Oral retinoid may prolong survival

Netherton Syndrome (Figure 2.35A)
- AR, SPINK5 gene defect (encodes serine protease inhibitor LEKT1)
- Presents at or near birth with generalized erythroderma and scaling, ± collodion membrane
- Triad of congenital ichthyosis (ichthyosis linearis circumflexa {ILC} or congenital ichthyosiform erythroderma {CIE}), trichorrhexis invaginata (TI, bamboo-like or ball-and-socket appearance of hair shaft), and atopy
- ILC: serpiginous or circinate erythematous plaques with double-edged scale
- TI: most specific hair finding (eyebrow with high yield), trichorrhexis nodosa is most common

Sjögren–Larsson Syndrome
- AR, FALDH gene defect (encoding fatty aldehyde dehydrogenase)
  → involved in synthesis of epidermal lipids and catabolism of sphingolipids in the brain
- Presents at or near birth with erythema, generalized ichthyosis and pruritus
  → evolves into dark scales on lower abdomen, flexures, and neck with persistent pruritus, palmoplantar keratoderma (PPK)
- Ichthyosis, spastic ditetraplegia (scissor gait), MR, perifoveal “glistening white dots” in ocular fundus

SJO gren – Showy Glistening white dots
SJOgren – think of trying to JOG with a spastic gait

CHILD Syndrome (Figure 2.35B)
- Congenital hemidysplasia with ichthyosiform erythroderma and limb defects
- XLD, NSDHL gene defect, encodes NADPH steroid dehydrogenase-like protein (enzyme 3b-hydroxysteroid-dehydrogenase)
- Presents at or near birth with striking unilateral ichthyotic erythroderma (face typically spared); over time erythema fades while hyperkeratosis persists
- Ipsilateral alopecia, ipsilateral organ aplasia/agenesis, ± cleft palate
- Ipsilateral skeletal defects such as hypoplasia of digits or ribs to complete amelia, stippled epiphyses (seen in early infancy and resolves during childhood)
Conradi–Hünermann–Happle Syndrome (XLD Chondrodysplasia Punctata) (Figure 2.35C)

- XLD (different from severe AR rhizomelic form), mutation in EBP gene, coding emopamil-binding protein (sterol isomerase activity) → accumulation of 8(9) cholesterol and 8-dehydrocholesterol (impaired cholesterol synthesis)
- Presents at birth with ichthyosiform erythroderma → hyperkeratosis replaced by linear/patchy follicular atrophoderma and ice pick–like scars
- Chondrodysplasia punctata: stippled or punctate calcification of the epiphyses or “stippled epiphyses” (detected during infancy)
- Cataracts, deafness, scarring alopecia, frontal bossing with flat nasal bridge

CONradi – think of a CON man who becomes crippled with stippled epiphyses

Chondrodysplasia Punctata (distinct from XLD CP)

- XR, arylsulfatase E defect, also can be AD

Rhizomelic Chondrodysplasia Punctata

- AR, PEX7 gene defect (peroxisomal biogenesis disorder)
- Presents with diffuse fine scaling and erythema; alopecia
- Punctate chondrodysplasia, cleft vertebrate, respiratory compromise

KID Syndrome (Keratitis–Ichthyosis–Deafness Syndrome)

- AD (few AR), GJB2 gene defect (encoding connexin 26)
- Presents at or near birth with symmetric erythematous hyperkeratotic plaques on knees, elbows, and face; PPK with grainy or stippled appearance
- Congenital sensorineural deafness, vascularizing keratitis with secondary blindness, photophobia, abnormalities of teeth/nails, ↑ infections, ↑ risk (rare) of SCC

KID Syndrome – Connexin 26

Figure 2.35
A: ILC in Netherton syndrome
(Courtesy of Dr. Michelle B. Bain)
B: CHILD syndrome
C: Chondrodysplasia punctata
Refsum Disease (Figure 2.36A)
- AR, mutation of PAHX (PHYH) gene (peroxisomal phytanoyl-CoA hydroxylase) or PEX7 gene (biogenesis factor 7) → excessive accumulation of phytanic acid
- Presents at childhood/adolescence with variable symptoms but typically mild ichthyosis (like ichthyosis vulgaris), cerebellar ataxia, peripheral neuropathy, “salt and pepper” retinitis pigmentosa, deafness
- Infantile Refsum (onset at birth): mutation in PEX1, PEX2, or PEX26
- Treat with dietary restriction of phytanic acid

Darier Disease (Keratosis Follicularis) (Figure 2.36B, C)
- AD, ATP2A2 gene mutation, encodes SERCA2 (sarcoendoplasmic reticulum calcium ATPase)
- Presents with hyperkeratotic papules coalescing into warty plaques in a seborrheic distribution
- Acrokeratosis verruciformis of Hopf: verrucous papules on dorsum of hands
- Palmar keratosis/pits
- Nails: red and white alternating longitudinal bands, V-shaped nicks at distal nail plate, subungual hyperkeratosis
- Oral: cobblestoning of oral and anogenital mucosa
- Histology: acantholysis with corp rond and grains

K. OTHER CONDITIONS
Palmoplantar Keratodermas (see Tables 2-6, 2-7)
Ectodermal Dysplasias (see Table 2-8)
Metabolic and Enzyme Deficiency Diseases (Table 2-9)
Signs of Spinal Dysraphism (Table 2-10)
Keratinopathies (Table 2-11)
<table>
<thead>
<tr>
<th>Disease</th>
<th>Type</th>
<th>Inh</th>
<th>Mutation</th>
<th>Clinical Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-epidermolytic PPK (Unna-Host Syndrome)</td>
<td>Diffuse</td>
<td>AD</td>
<td>K1</td>
<td>PPK with erythematous border, hyperhidrosis, secondary tinea infections, pitted keratolysis, no transgrediens</td>
</tr>
<tr>
<td>Epidermolytic PPK (Vöerner Syndrome)</td>
<td>Epidermolytic</td>
<td>AD</td>
<td>K1 or K9 (most common)</td>
<td>Clinically similar to non-epidermolytic PPK but histology shows epidermolytic hyperkeratosis</td>
</tr>
<tr>
<td>Mal de Meleda</td>
<td>Transgredient</td>
<td>AR</td>
<td>SLURP-1 gene (encodes protein: Secreted Ly-6/uPar related protein)</td>
<td>Transgredient PPK (hands, feet, elbows, knees), hyperhidrosis with malodor and secondary infections, perioral erythema, thickened nails</td>
</tr>
<tr>
<td>Vohwinkel Syndrome, Classic (Keratoderma Hereditaria Mutilans)</td>
<td>Mutilating keratoderma + deafness</td>
<td>AD</td>
<td>GJB2 (encodes connexin 26)</td>
<td>Diffuse honeycomb-like PPK, pseudoainhum, starfish-shaped keratoses of joints, sensorineural deafness, linear keratotic plaques of knees, scarring alopecia</td>
</tr>
<tr>
<td>Vohwinkel Syndrome, Variant</td>
<td>Mutilating + ichthyosis</td>
<td>AD</td>
<td>Loricrin (cornified envelope protein)</td>
<td>Similar to classic Vohwinkel, but no deafness and more generalized ichthyosis</td>
</tr>
<tr>
<td>Papillon–Lefèvre Syndrome</td>
<td>PPK + periodontitis</td>
<td>AR</td>
<td>Cathepsin C (lysosomal protease)</td>
<td>Periodontitis, early loss of teeth, transgredient erythematous PPK with psoriasiform lesions on extremities, calcification of falx/tentorium, hyperhidrosis</td>
</tr>
<tr>
<td>Haim–Munk Syndrome</td>
<td>PPK + periodontitis + onychogryphosis</td>
<td>AR</td>
<td>Cathepsin C</td>
<td>Papillon–Lefèvre syndrome + onychogryphosis, arachnodactyly, acroosteolysis</td>
</tr>
<tr>
<td>Naxos Disease</td>
<td>PPK + woolly hair + cardiomyopathy</td>
<td>AR</td>
<td>Plakoglobin</td>
<td>Woolly hair, right ventricular cardiomyopathy with arrhythmias, PPK</td>
</tr>
<tr>
<td>Carvajal Syndrome</td>
<td>PPK + woolly hair + cardiomyopathy</td>
<td>AR</td>
<td>Desmoplakin</td>
<td>Dilated cardiomyopathy, PPK in first year of life, woolly hair</td>
</tr>
<tr>
<td>Olmsted Syndrome</td>
<td>Mutilating PPK + periorificial plaques</td>
<td>?</td>
<td>? (possible K5 and K14)</td>
<td>PPK (initially focal, then widespread) leading to flexion deformities, autoamputation, erythematous hyperkeratotic perioral plaques</td>
</tr>
<tr>
<td>Non-epidermolytic PPK with deafness</td>
<td>PPK + sensorineural deafness</td>
<td>?</td>
<td>Connexin 26 or A7445G (mitochondrial)</td>
<td>PPK, progressive sensorineural deafness</td>
</tr>
<tr>
<td>Disease</td>
<td>Inh</td>
<td>Mutation</td>
<td>Clinical Appearance</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>-------</td>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td><strong>Howel–Evans Syndrome</strong></td>
<td>AD</td>
<td>TOC gene (tylosis-oesophageal carcinoma)</td>
<td>Focal PPK over pressure areas (balls of feet &gt; hands), oral leukokeratosis, ↑ esophageal CA</td>
<td></td>
</tr>
<tr>
<td><strong>Richner–Hanhart Syndrome</strong></td>
<td>AR</td>
<td>Hepatic tyrosine amino-transferase (TAT)</td>
<td>Pseudoherpetic keratitis, dendritic corneal ulcers (tyrosine crystal deposition in eyes), painful focal PPK, progressive MR, treat with diet restricted in tyrosine and phenylalanine</td>
<td></td>
</tr>
<tr>
<td><strong>Punctate PPK</strong></td>
<td>AD</td>
<td>?</td>
<td>Begins during or near adolescence, punctate keratoses on palms, can also occur in palmar creases of patients of African origin</td>
<td></td>
</tr>
<tr>
<td><strong>Acrokeratolastoidosis</strong></td>
<td>AD</td>
<td></td>
<td>Skin-colored papules involving hands and feet</td>
<td></td>
</tr>
<tr>
<td><strong>Striate PPK</strong></td>
<td>AD</td>
<td>Desmoglein 1 and desmoplakin 1</td>
<td>Onset in teens/early adulthood, hyperkeratotic linear plaques on volar fingers, diffuse/focal plaques on proximal palms/soles</td>
<td></td>
</tr>
<tr>
<td><strong>Erythrokeratoderma Variabilis</strong></td>
<td>AD</td>
<td>GJB3, GJB4 (connexin 30.3 and 31)</td>
<td>Erythematous migratory patches (may last minutes to days), fixed hyperkeratotic plaques, 50% with PPK, flexures spared</td>
<td></td>
</tr>
<tr>
<td><strong>Progressive Symmetric ErythrokeratodermA</strong></td>
<td>AD</td>
<td>Likely loricrin mutation or connexin 31</td>
<td>Fixed hyperkeratotic erythematous plaques over joints/extremities, 50% with PPK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease</th>
<th>Inh</th>
<th>Mutation</th>
<th>Clinical Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hidrotic Ectodermal Dysplasia</strong></td>
<td>AD</td>
<td>GJB6 (connexin 30)</td>
<td>Hypotrichosis, diffuse PPK, nail dystrophy, NORMAL teeth and sweating, MR, ocular abnormalities</td>
</tr>
<tr>
<td><strong>Hypohidrotic (Anhidrotic) Ectodermal Dysplasia</strong></td>
<td>XR</td>
<td>EDA (ectodysplasin A)</td>
<td>Hypotrichosis, periorbital hyperpigmentation, ABSENT or conical teeth, sweating with heat intolerance, NORMAL nails, saddle nose, everted thick lips, ↑ bronchopulmonary infections</td>
</tr>
<tr>
<td><strong>Ankyloblepharon-Ectodermal Dysplasia-Clefting Syndrome</strong></td>
<td>AD</td>
<td>p63</td>
<td>Chronic erosive scalp dermatitis, abnormal granulation tissue, recurrent bacterial infections, ankyloblepharon, hypotrichosis, 80% cleft lip/palate</td>
</tr>
<tr>
<td><strong>Ectodermal Dysplasia-Ectrodactyly-Clefting Syndrome</strong></td>
<td>AD</td>
<td>p63</td>
<td>Ectrodactyly (split hand/foot), hearing loss, nail dystrophy, ± PPK, 70% cleft lip/palate, sparse and dry hair, hypodontia</td>
</tr>
<tr>
<td><strong>Rapp-Hodgkin Syndrome</strong></td>
<td>AD</td>
<td></td>
<td>Mid facial hypoplasia, cleft lip/palate, scalp dermatitis, ↓ sweating, nail dystrophy, hypodontia</td>
</tr>
<tr>
<td><strong>Ectodermal Dysplasia/Skin Fragility Syndrome</strong></td>
<td>AR</td>
<td>Plakophilin-1</td>
<td>Trauma-induced bullae (most prominent during infancy), sparse hair, thick dystrophic nails</td>
</tr>
</tbody>
</table>
Figure 2.37

A: Anhidrotic ectodermal dysplasia
(Courtesy of Dr. Michelle B. Bain)
B: Anhidrotic ectodermal dysplasia
(Courtesy of Dr. Michelle B. Bain)

C: Pseudoainhum in Vohwinkel syndrome
(Courtesy of Dr. Paul Getz)
D: Palmoplantar keratoderma in Vohwinkel syndrome
(Courtesy of Dr. Paul Getz)
<table>
<thead>
<tr>
<th>Disease</th>
<th>Inh</th>
<th>Defect</th>
<th>Clinical Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaptonuria</td>
<td>AR</td>
<td>Homogentisic acid (HA) oxidase</td>
<td>Blue-gray pigmentation of cartilage (helices), sclera and skin (axilla); urine darkens on standing, arthritis</td>
</tr>
<tr>
<td>Biotinidase Deficiency</td>
<td>AR</td>
<td></td>
<td>Alopecia, periorificial dermatitis, developmental delay, seizures; treat with biotin</td>
</tr>
<tr>
<td>Fabry Disease</td>
<td>XLR</td>
<td>α-Galactosidase A</td>
<td>Glycosphingolipids in vascular endothelium: multiple angiokeratomas, extremity pain/paresthesias, whorl-like corneal and lenticular opacities, birefringent lipid globules in urine (“maltese crosses”), MI, cerebrovascular accident (CVA)</td>
</tr>
<tr>
<td>Fucosidosis</td>
<td>AR</td>
<td>α-Fucosidase</td>
<td>Multiple angiokeratomas, coarse facies, growth retardation, dysostosis multiplex, mental retardation</td>
</tr>
<tr>
<td>Gaucher Disease</td>
<td>AR</td>
<td>α- Glucosidase (Glucocerebrosidase)</td>
<td>Type 1 (adult): no CNS findings + diffuse brown skin pigmentation, thrombocytopenia, hepatosplenomegaly (HSM), bone pain, ehrlenmeyer flask deformity of femoral midshaft Type 2 (infant): no skin findings, severe, rapid death Type 3 (juvenile): chronic neuropathy</td>
</tr>
<tr>
<td>Hartnup Disease</td>
<td>AR</td>
<td>SLC6A19</td>
<td>↓ Renal reabsorption of neutral amino acids, pellagra-like dermatosis with photosensitivity, ataxia, tremors</td>
</tr>
<tr>
<td>Holocarboxylase Synthetase Deficiency</td>
<td>AR</td>
<td></td>
<td>Alopecia, periorial/perianal dermatitis, metabolic encephalopathy, metabolic acidosis; treat with biotin</td>
</tr>
<tr>
<td>Hunter Disease</td>
<td>XLR</td>
<td>Iduronidate sulfatase</td>
<td>Firm, flesh-colored to white papules coalescing over scapula</td>
</tr>
<tr>
<td>Hurler Disease</td>
<td>AR</td>
<td>α-L-iduronidase</td>
<td>Mental retardation (MR), HSM, hernia, opacities, gargoyle-like features</td>
</tr>
<tr>
<td>Lesch–Nyhan Syndrome</td>
<td>XLR</td>
<td>HGPRT deficiency</td>
<td>Self-mutilation, orange crystals in the diaper, gout, choreoathetosis, MR</td>
</tr>
<tr>
<td>Lipoid Proteinosis</td>
<td>AR</td>
<td>ECM1 defect</td>
<td>Pearly papules, hippocampal calcification, infiltration of deposits on lips and tongue (wooden), hoarseness</td>
</tr>
<tr>
<td>Neimann–Pick Disease</td>
<td>AR</td>
<td>Sphingomyelinase deficiency (SMPD1)</td>
<td>Type A: failure to thrive, HSM, neurologic deterioration Type B: minimal neurologic disease, xanthomas, histiocytic infiltration in viscera, psychomotor delay, muscle weakness, blindness (cherry red spots)</td>
</tr>
<tr>
<td>Phenylketonuria</td>
<td>AR</td>
<td>SLC39A4 (zinc transporter)</td>
<td>Diffuse hypopigmentation, eczema, MR, sclerodermoid changes, blonde hair, blue eyes, urine and skin with mousy odor</td>
</tr>
<tr>
<td>Prolidase Deficiency</td>
<td>AR</td>
<td>Prolidase</td>
<td>Skin fragility, ulceration and scarring over lower extremities, photosensitivity, MR, recurrent infections</td>
</tr>
<tr>
<td>Wilson’s Disease</td>
<td>AR</td>
<td>ATP 7B (ATPase copper transporting enzyme)</td>
<td>Copper accumulation in liver/brain/cornea, cirrhosis, blue lunula, Kayser–Fleischer rings, ataxia, dementia, hepatomegaly</td>
</tr>
</tbody>
</table>
Table 2-10  Signs of Spinal Dysraphism (High Risk for Dysraphism if ≥2 of the Following)

<table>
<thead>
<tr>
<th>Hypertrichosis</th>
<th>Dimpling</th>
<th>Skin tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tails/pseudotails</td>
<td>Lipomas</td>
<td>Aplasia cutis</td>
</tr>
<tr>
<td>Hemangiomas</td>
<td>Dermoid cysts/sinuses</td>
<td>Telangiectasia, capillary malformation, nevi (less likely)</td>
</tr>
</tbody>
</table>

Table 2-11  Keratinopathies

<table>
<thead>
<tr>
<th>Type II Keratin</th>
<th>Type I Keratin</th>
<th>Location of Expression</th>
<th>Associated Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Suprabasal keratinocytes</td>
<td>Epidermolytic hyperkeratosis (Bullous CIE) Unna-Thost PPK (K1) Ichthyosis hystrix of Curth-Macklin (K1)</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td><strong>Palmoplantar</strong>, suprabasal keratinocytes</td>
<td>Epidermolytic PPK (Vörner)</td>
</tr>
<tr>
<td>2 (2e)</td>
<td>10</td>
<td>Granular and upper spinous layer</td>
<td>Ichthyosis bullosa of Siemens</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>Cornea</td>
<td>Meesmann corneal dystrophy</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>Mucosal epithelium</td>
<td>White sponge nevus</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td><strong>Basal keratinocytes</strong></td>
<td>Epidermolytic bullousa simplex (EBS) Dowling-Degos disease (K5 alone)</td>
</tr>
<tr>
<td>6a</td>
<td>16</td>
<td>Outer root sheath</td>
<td>Pachyonychia congenita I (Jadassohn Lewandowsky) Focal PPK</td>
</tr>
<tr>
<td>6b</td>
<td>17</td>
<td><strong>Nail bed</strong></td>
<td>Pachyonychia congenita II (Jackson-Lawler) Steatocystoma multiplex</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>Simple epithelium</td>
<td>Cryptogenic cirrhosis</td>
</tr>
<tr>
<td>K81 and K86</td>
<td></td>
<td>Hair</td>
<td>Monilethrix</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>Simple epithelium, bulge cells</td>
<td>Hyperproliferative keratinocytes</td>
</tr>
</tbody>
</table>

References

Dermatology
Illustrated Study Guide and Comprehensive Board Review
Jain, S.
2012, XII, 369 p. 178 illus., 173 illus. in color., Softcover
ISBN: 978-1-4419-0524-6