Contents

Preface v
Acknowledgments xi
List of Figures xix
List of Tables xxv

1. INTRODUCTION 1
1.1 System-Design Challenges 1
1.2 Abstraction Levels 3
1.2.1 Y-Chart 3
1.2.2 Processor-Level Behavioral Model 5
1.2.3 Processor-level structural model 7
1.2.4 Processor-level synthesis 10
1.2.5 System-Level Behavioral Model 13
1.2.6 System Structural Model 14
1.2.7 System Synthesis 14
1.3 System Design Methodology 18
1.3.1 Missing semantics 20
1.3.2 Model Algebra 21
1.4 System-Level Models 23
1.5 Platform Design 27
1.6 System Design Tools 29
1.7 Summary 32

2. SYSTEM DESIGN METHODOLOGIES 35
2.1 Bottom-up Methodology 35
2.2 Top-down Methodology 37
2.3 Meet-in-the-middle Methodology 38

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Platform Methodology</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>FPGA Methodology</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>System-level Synthesis</td>
<td>44</td>
</tr>
<tr>
<td>2.7</td>
<td>Processor Synthesis</td>
<td>45</td>
</tr>
<tr>
<td>2.8</td>
<td>Summary</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>Models of Computation</td>
<td>50</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Process-Based Models</td>
<td>52</td>
</tr>
<tr>
<td>3.1.2</td>
<td>State-Based Models</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>System Design Languages</td>
<td>65</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Netlists and Schematics</td>
<td>66</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Hardware-Description Languages</td>
<td>66</td>
</tr>
<tr>
<td>3.2.3</td>
<td>System-Level Design Languages</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>System Modeling</td>
<td>68</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Design Process</td>
<td>69</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Abstraction Levels</td>
<td>71</td>
</tr>
<tr>
<td>3.4</td>
<td>Processor Modeling</td>
<td>72</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Application Layer</td>
<td>73</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Operating System Layer</td>
<td>75</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Hardware Abstraction Layer</td>
<td>78</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Hardware Layer</td>
<td>80</td>
</tr>
<tr>
<td>3.5</td>
<td>Communication Modeling</td>
<td>83</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Application Layer</td>
<td>84</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Presentation Layer</td>
<td>88</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Session Layer</td>
<td>90</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Network Layer</td>
<td>92</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Transport Layer</td>
<td>93</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Link Layer</td>
<td>94</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Stream Layer</td>
<td>98</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Media Access Layer</td>
<td>99</td>
</tr>
<tr>
<td>3.5.9</td>
<td>Protocol and Physical Layers</td>
<td>100</td>
</tr>
<tr>
<td>3.6</td>
<td>System Models</td>
<td>102</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Specification Model</td>
<td>103</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Network TLM</td>
<td>104</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Protocol TLM</td>
<td>106</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Bus Cycle-Accurate Model (BCAM)</td>
<td>107</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Cycle-Accurate Model (CAM)</td>
<td>108</td>
</tr>
</tbody>
</table>
3.7 Summary

4. SYSTEM SYNTHESIS

- **4.1 System Design Trends**
- **4.2 TLM Based Design**
- **4.3 Automatic TLM Generation**
 - 4.3.1 Application Modeling
 - 4.3.2 Platform Definition
 - 4.3.3 Application to Platform Mapping
 - 4.3.4 TLM Based Performance Estimation
 - 4.3.5 TLM Semantics
- **4.4 Automatic Mapping**
 - 4.4.1 GSM Encoder Application
 - 4.4.2 Application Profiling
 - 4.4.3 Load Balancing Algorithm
 - 4.4.4 Longest Processing Time Algorithm
- **4.5 Platform Synthesis**
 - 4.5.1 Component data models
 - 4.5.2 Platform Generation Algorithm
 - 4.5.3 Cycle Accurate Model Generation
 - 4.5.4 Summary

5. SOFTWARE SYNTHESIS

- **5.1 Preliminaries**
 - 5.1.1 Target Languages for Embedded Systems
 - 5.1.2 RTOS
- **5.2 Software Synthesis Overview**
 - 5.2.1 Example Input TLM
 - 5.2.2 Target Architecture
- **5.3 Code Generation**
- **5.4 Multi-Task Synthesis**
 - 5.4.1 RTOS-based Multi-Tasking
 - 5.4.2 Interrupt-based Multi-Tasking
- **5.5 Internal Communication**
- **5.6 External Communication**
 - 5.6.1 Data Formatting
 - 5.6.2 Packetization
 - 5.6.3 Synchronization
 - 5.6.4 Media Access Control
5.7 Startup Code
5.8 Binary Image Generation
5.9 Execution
5.10 Summary

6. HARDWARE SYNTHESIS
6.1 RTL Architecture
6.2 Input Models
 6.2.1 C-code specification
 6.2.2 Control-Data Flow Graph specification
 6.2.3 Finite State Machine with Data specification
 6.2.4 RTL specification
 6.2.5 HDL specification
6.3 Estimation and Optimization
6.4 Register Sharing
6.5 Functional Unit Sharing
6.6 Connection Sharing
6.7 Register Merging
6.8 Chaining and Multi-Cycling
6.9 Functional-Unit Pipelining
6.10 Datapath Pipelining
6.11 Control and Datapath Pipelining
6.12 Scheduling
 6.12.1 RC scheduling
 6.12.2 TC scheduling
6.13 Interface Synthesis
6.14 Summary

7. VERIFICATION
7.1 Simulation Based Methods
 7.1.1 Stimulus Optimization
 7.1.2 Monitor Optimization
 7.1.3 SpeedUp Techniques
 7.1.4 Modeling Techniques
7.2 Formal Verification Methods
 7.2.1 Logic Equivalence Checking
 7.2.2 FSM Equivalence Checking
Contents

- 7.2.3 Model Checking 270
- 7.2.4 Theorem Proving 273
- 7.2.5 Drawbacks of Formal Verification 275
- 7.2.6 Improvements to Formal Verification Methods 275
- 7.2.7 Semi-formal Methods: Symbolic Simulation 276

- 7.3 Comparative Analysis of Verification Methods 276

- 7.4 System Level Verification 278
 - 7.4.1 Formal Modeling 280
 - 7.4.2 Model Algebra 282
 - 7.4.3 Verification by Correct Refinement 283

- 7.5 Summary 285

- 8. EMBEDDED DESIGN PRACTICE 287
 - 8.1 System Level Design Tools 287
 - 8.1.1 Academic Tools 289
 - 8.1.2 Commercial Tools 296
 - 8.1.3 Outlook 299
 - 8.2 Embedded Software Design Tools 300
 - 8.2.1 Academic Tools 301
 - 8.2.2 Commercial Tools 303
 - 8.2.3 Outlook 305
 - 8.3 Hardware Design Tools 306
 - 8.3.1 Academic Tools 308
 - 8.3.2 Commercial Tools 314
 - 8.3.3 Outlook 319
 - 8.4 Case Study 319
 - 8.4.1 Embedded System Environment 320
 - 8.4.2 Design Driver: MP3 Decoder 324
 - 8.4.3 Results 327
 - 8.5 Summary 333

References 335

Index 349
Embedded System Design
Modeling, Synthesis and Verification
Gajski, D.D.; Abdi, S.; Gerstlauer, A.; Schirner, G.
2009, XXV, 352 p., Hardcover
ISBN: 978-1-4419-0503-1