## Contents

### Series Preface

vii

### Preface

ix

### 1 Linear Spaces

1.1 Linear spaces ............................................ 1
1.2 Normed spaces ........................................... 7
  1.2.1 Convergence .......................................... 10
  1.2.2 Banach spaces ....................................... 13
  1.2.3 Completion of normed spaces ...................... 15
1.3 Inner product spaces .................................... 22
  1.3.1 Hilbert spaces ...................................... 27
  1.3.2 Orthogonality ....................................... 28
1.4 Spaces of continuously differentiable functions ........ 39
  1.4.1 Hölder spaces ....................................... 41
1.5 $L^p$ spaces ................................................. 44
1.6 Compact sets ................................................. 49

### 2 Linear Operators on Normed Spaces

51

2.1 Operators .................................................. 52
2.2 Continuous linear operators .............................. 55
  2.2.1 $\mathcal{L}(V, W)$ as a Banach space ............... 59
2.3 The geometric series theorem and its variants ........ 60
  2.3.1 A generalization ..................................... 64
### Contents

#### 2.3.2 A perturbation result ........................................... 66

#### 2.4 Some more results on linear operators .......................... 72

- 2.4.1 An extension theorem ........................................... 72
- 2.4.2 Open mapping theorem ......................................... 74
- 2.4.3 Principle of uniform boundedness ............................ 75
- 2.4.4 Convergence of numerical quadratures ....................... 76

#### 2.5 Linear functionals .................................................. 79

- 2.5.1 An extension theorem for linear functionals ................. 80
- 2.5.2 The Riesz representation theorem ............................ 82

#### 2.6 Adjoint operators ................................................... 85

#### 2.7 Weak convergence and weak compactness ....................... 90

#### 2.8 Compact linear operators .......................................... 95

- 2.8.1 Compact integral operators on $C(D)$ .......................... 96
- 2.8.2 Properties of compact operators ............................. 97
- 2.8.3 Integral operators on $L^2(a,b)$ .............................. 99
- 2.8.4 The Fredholm alternative theorem .......................... 101
- 2.8.5 Additional results on Fredholm integral equations .......... 105

#### 2.9 The resolvent operator ............................................. 109

- 2.9.1 $R(\lambda)$ as a holomorphic function ....................... 110

#### 3 Approximation Theory .............................................. 115

#### 3.1 Approximation of continuous functions by polynomials ......... 116

#### 3.2 Interpolation theory ............................................... 118

- 3.2.1 Lagrange polynomial interpolation ........................... 120
- 3.2.2 Hermite polynomial interpolation ............................ 122
- 3.2.3 Piecewise polynomial interpolation .......................... 124
- 3.2.4 Trigonometric interpolation ................................ 126

#### 3.3 Best approximation ................................................ 131

- 3.3.1 Convexity, lower semicontinuity ............................. 132
- 3.3.2 Some abstract existence results ............................. 134
- 3.3.3 Existence of best approximation ............................ 137
- 3.3.4 Uniqueness of best approximation ........................... 138

#### 3.4 Best approximations in inner product spaces, projection on closed convex sets ........................................ 142

#### 3.5 Orthogonal polynomials ........................................... 149

#### 3.6 Projection operators ............................................... 154

#### 3.7 Uniform error bounds .............................................. 157

- 3.7.1 Uniform error bounds for $L^2$-approximations ............. 160
- 3.7.2 $L^2$-approximations using polynomials ...................... 162
- 3.7.3 Interpolatory projections and their convergence ............ 164

#### 4 Fourier Analysis and Wavelets .................................... 167

#### 4.1 Fourier series ...................................................... 167

#### 4.2 Fourier transform .................................................. 181

#### 4.3 Discrete Fourier transform ....................................... 187
## Contents

4.4 Haar wavelets ........................................ 191
4.5 Multiresolution analysis ................................ 199

5 Nonlinear Equations and Their Solution by Iteration 207
5.1 The Banach fixed-point theorem .......................... 208
5.2 Applications to iterative methods ....................... 212
   5.2.1 Nonlinear algebraic equations ....................... 213
   5.2.2 Linear algebraic systems ............................ 214
   5.2.3 Linear and nonlinear integral equations ............. 216
   5.2.4 Ordinary differential equations in Banach spaces .... 221
5.3 Differential calculus for nonlinear operators ............. 225
   5.3.1 Fréchet and Gâteaux derivatives .................... 225
   5.3.2 Mean value theorems ................................ 229
   5.3.3 Partial derivatives .................................. 230
   5.3.4 The Gâteaux derivative and convex minimization .... 231
5.4 Newton’s method ........................................ 236
   5.4.1 Newton’s method in Banach spaces .................. 236
   5.4.2 Applications ......................................... 239
5.5 Completely continuous vector fields ...................... 241
   5.5.1 The rotation of a completely continuous vector field 243
5.6 Conjugate gradient method for operator equations ....... 245

6 Finite Difference Method 253
6.1 Finite difference approximations ........................ 253
6.2 Lax equivalence theorem .................................. 260
6.3 More on convergence ..................................... 269

7 Sobolev Spaces 277
7.1 Weak derivatives ........................................ 277
7.2 Sobolev spaces .......................................... 283
   7.2.1 Sobolev spaces of integer order ...................... 284
   7.2.2 Sobolev spaces of real order ........................ 290
   7.2.3 Sobolev spaces over boundaries ...................... 292
7.3 Properties .............................................. 293
   7.3.1 Approximation by smooth functions .................. 293
   7.3.2 Extensions .......................................... 294
   7.3.3 Sobolev embedding theorems ........................ 295
   7.3.4 Traces .............................................. 297
   7.3.5 Equivalent norms .................................... 298
   7.3.6 A Sobolev quotient space ............................ 302
7.4 Characterization of Sobolev spaces via the Fourier transform 308
7.5 Periodic Sobolev spaces .................................. 311
   7.5.1 The dual space ....................................... 314
   7.5.2 Embedding results ................................... 315
   7.5.3 Approximation results ............................... 316
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.4</td>
<td>An illustrative example of an operator</td>
<td>317</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Spherical polynomials and spherical harmonics</td>
<td>318</td>
</tr>
<tr>
<td>7.6</td>
<td>Integration by parts formulas</td>
<td>323</td>
</tr>
<tr>
<td>8</td>
<td>Weak Formulations of Elliptic Boundary Value Problems</td>
<td>327</td>
</tr>
<tr>
<td>8.1</td>
<td>A model boundary value problem</td>
<td>328</td>
</tr>
<tr>
<td>8.2</td>
<td>Some general results on existence and uniqueness</td>
<td>330</td>
</tr>
<tr>
<td>8.3</td>
<td>The Lax-Milgram Lemma</td>
<td>334</td>
</tr>
<tr>
<td>8.4</td>
<td>Weak formulations of linear elliptic boundary value problems</td>
<td>338</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Problems with homogeneous Dirichlet boundary conditions</td>
<td>338</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Problems with non-homogeneous Dirichlet boundary conditions</td>
<td>339</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Problems with Neumann boundary conditions</td>
<td>341</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Problems with mixed boundary conditions</td>
<td>343</td>
</tr>
<tr>
<td>8.4.5</td>
<td>A general linear second-order elliptic boundary value problem</td>
<td>344</td>
</tr>
<tr>
<td>8.5</td>
<td>A boundary value problem of linearized elasticity</td>
<td>348</td>
</tr>
<tr>
<td>8.6</td>
<td>Mixed and dual formulations</td>
<td>354</td>
</tr>
<tr>
<td>8.7</td>
<td>Generalized Lax-Milgram Lemma</td>
<td>359</td>
</tr>
<tr>
<td>8.8</td>
<td>A nonlinear problem</td>
<td>361</td>
</tr>
<tr>
<td>9</td>
<td>The Galerkin Method and Its Variants</td>
<td>367</td>
</tr>
<tr>
<td>9.1</td>
<td>The Galerkin method</td>
<td>367</td>
</tr>
<tr>
<td>9.2</td>
<td>The Petrov-Galerkin method</td>
<td>374</td>
</tr>
<tr>
<td>9.3</td>
<td>Generalized Galerkin method</td>
<td>376</td>
</tr>
<tr>
<td>9.4</td>
<td>Conjugate gradient method: variational formulation</td>
<td>378</td>
</tr>
<tr>
<td>10</td>
<td>Finite Element Analysis</td>
<td>383</td>
</tr>
<tr>
<td>10.1</td>
<td>One-dimensional examples</td>
<td>384</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Linear elements for a second-order problem</td>
<td>384</td>
</tr>
<tr>
<td>10.1.2</td>
<td>High order elements and the condensation technique</td>
<td>389</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Reference element technique</td>
<td>390</td>
</tr>
<tr>
<td>10.2</td>
<td>Basics of the finite element method</td>
<td>393</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Continuous linear elements</td>
<td>394</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Affine-equivalent finite elements</td>
<td>400</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Finite element spaces</td>
<td>404</td>
</tr>
<tr>
<td>10.3</td>
<td>Error estimates of finite element interpolations</td>
<td>406</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Local interpolations</td>
<td>407</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Interpolation error estimates on the reference element</td>
<td>408</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Local interpolation error estimates</td>
<td>409</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Global interpolation error estimates</td>
<td>412</td>
</tr>
<tr>
<td>10.4</td>
<td>Convergence and error estimates</td>
<td>415</td>
</tr>
</tbody>
</table>
11 Elliptic Variational Inequalities and Their Numerical Approximations

11.1 From variational equations to variational inequalities
11.2 Existence and uniqueness based on convex minimization
11.3 Existence and uniqueness results for a family of EVIs
11.4 Numerical approximations
11.5 Some contact problems in elasticity
   11.5.1 A frictional contact problem
   11.5.2 A Signorini frictionless contact problem

12 Numerical Solution of Fredholm Integral Equations of the Second Kind

12.1 Projection methods: General theory
   12.1.1 Collocation methods
   12.1.2 Galerkin methods
   12.1.3 A general theoretical framework
12.2 Examples
   12.2.1 Piecewise linear collocation
   12.2.2 Trigonometric polynomial collocation
   12.2.3 A piecewise linear Galerkin method
   12.2.4 A Galerkin method with trigonometric polynomials
12.3 Iterated projection methods
   12.3.1 The iterated Galerkin method
   12.3.2 The iterated collocation solution
12.4 The Nyström method
   12.4.1 The Nyström method for continuous kernel functions
   12.4.2 Properties and error analysis of the Nyström method
   12.4.3 Collectively compact operator approximations
12.5 Product integration
   12.5.1 Error analysis
   12.5.2 Generalizations to other kernel functions
   12.5.3 Improved error results for special kernels
   12.5.4 Product integration with graded meshes
   12.5.5 The relationship of product integration and collocation methods
12.6 Iteration methods
   12.6.1 A two-grid iteration method for the Nyström method
   12.6.2 Convergence analysis
   12.6.3 The iteration method for the linear system
   12.6.4 An operations count
12.7 Projection methods for nonlinear equations
   12.7.1 Linearization
   12.7.2 A homotopy argument
   12.7.3 The approximating finite-dimensional problem
13 Boundary Integral Equations 551
13.1 Boundary integral equations .......................... 552
  13.1.1 Green’s identities and representation formula .... 553
  13.1.2 The Kelvin transformation and exterior problems . 555
  13.1.3 Boundary integral equations of direct type ......... 559
13.2 Boundary integral equations of the second kind .......... 565
  13.2.1 Evaluation of the double layer potential .......... 568
  13.2.2 The exterior Neumann problem .................. 571
13.3 A boundary integral equation of the first kind .......... 577
  13.3.1 A numerical method ............................ 579

14 Multivariable Polynomial Approximations 583
14.1 Notation and best approximation results .............. 583
14.2 Orthogonal polynomials ............................. 585
  14.2.1 Triple recursion relation ....................... 588
  14.2.2 The orthogonal projection operator and its error .. 590
14.3 Hyperinterpolation ................................. 592
  14.3.1 The norm of the hyperinterpolation operator .... 593
14.4 A Galerkin method for elliptic equations .............. 593
  14.4.1 The Galerkin method and its convergence ....... 595

References 601

Index 617
Theoretical Numerical Analysis
A Functional Analysis Framework
Atkinson, K.; Han, W.
2009, XVI, 625 p., Hardcover
ISBN: 978-1-4419-0457-7