1 Societal Aspects of Corrosion
We Live in a Metals-Based Society
Why Study Corrosion?
Corrosion and Human Life and Safety
Economics of Corrosion
Corrosion and the Conservation of Materials
The Study of Corrosion
Corrosion Science vs. Corrosion Engineering
Challenges for Today’s Corrosion Scientist
Problems
References

2 Getting Started on the Basics
Introduction
What is Corrosion?
Physical Processes of Degradation
Environmentally Assisted Degradation Processes
Electrochemical Reactions
Half-Cell Reactions
Anodic Reactions
Cathodic Reactions
Coupled Electrochemical Reactions
A Note About Atmospheric Corrosion
Secondary Effects of Cathodic Reactions
Three Simple Properties of Solutions
The Faraday and Faraday’s Law
Units for Corrosion Rates
Uniform vs. Localized Corrosion
The Eight Forms of Corrosion
Problems
References

3 Charged Interfaces
Introduction
Electrolytes
The Interior of an Electrolyte
Interfaces
Contents

Encountering an Interface .. 35
The Solution/Air Interface .. 36
The Metal/Solution Interface .. 37
Metal Ions in Two Different Chemical Environments 38
The Electrical Double Layer .. 39
 The Gouy—Chapman Model of the Electrical Double Layer 40
 The Electrostatic Potential and Potential Difference 40
 The Stern Model of the Electrical Double Layer 41
 The Bockris—Devanathan—Müller Model of the Electrical Double Layer 42
Significance of the Electrical Double Layer to Corrosion 43

Electrode Potentials ... 44
 The Potential Difference Across a Metal/Solution Interface 44
 Relative Electrode Potentials .. 45
 The Electromotive Force Series 46
Reference Electrodes for the Laboratory and the Field 48
Measurement of Electrode Potentials 52
Problems ... 53
References ... 55

4 A Brief Review of Thermodynamics ... 57
 Introduction .. 57
 Thermodynamic State Functions 57
 Internal Energy ... 57
 Entropy .. 58
 Enthalpy .. 59
 Helmholtz and Gibbs Free Energies 59
 Free Energy and Spontaneity 60
 Relationships Between Thermodynamic Functions 61
 The Chemical Potential and Standard States 63
 More About the Chemical Potential 63
 A Note About Units for ΔG° or ΔG 64
 The Free Energy and Electrode Potentials 65
 The Nernst Equation ... 66
 Standard Free Energy Change and the Equilibrium Constant 67
A Quandary – The Sign of Electrode Potentials 68
 Factors Affecting Electrode Potentials 69
Problems ... 70
References ... 72

5 Thermodynamics of Corrosion: Electrochemical Cells and Galvanic Corrosion ... 73
 Introduction .. 73
 Electrochemical Cells ... 73
 Electrochemical Cells on the Same Surface 75
 Galvanic Corrosion .. 76
 Galvanic Series .. 76
 Cathodic Protection .. 79
 Two Types of Metallic Coatings .. 80
 Titanium Coatings on Steel: A Research Study 82
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Against Galvanic Corrosion</td>
<td>83</td>
</tr>
<tr>
<td>Differential Concentration Cells</td>
<td>84</td>
</tr>
<tr>
<td>Metal Ion Concentration Cells</td>
<td>84</td>
</tr>
<tr>
<td>Oxygen Concentration Cells</td>
<td>86</td>
</tr>
<tr>
<td>The Evans Water Drop Experiment</td>
<td>88</td>
</tr>
<tr>
<td>Waterline Corrosion</td>
<td>88</td>
</tr>
<tr>
<td>Crevice Corrosion: A Preview</td>
<td>89</td>
</tr>
<tr>
<td>Problems</td>
<td>89</td>
</tr>
<tr>
<td>References</td>
<td>93</td>
</tr>
<tr>
<td>6 Thermodynamics of Corrosion: Pourbaix Diagrams</td>
<td>95</td>
</tr>
<tr>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>Pourbaix Diagram for Aluminum</td>
<td>96</td>
</tr>
<tr>
<td>Construction of the Pourbaix Diagram for Aluminum</td>
<td>96</td>
</tr>
<tr>
<td>Comparison of Thermodynamic and Kinetic Data for Aluminum</td>
<td>101</td>
</tr>
<tr>
<td>Pourbaix Diagram for Water</td>
<td>101</td>
</tr>
<tr>
<td>Pourbaix Diagrams for Other Metals</td>
<td>103</td>
</tr>
<tr>
<td>Pourbaix Diagram for Zinc</td>
<td>103</td>
</tr>
<tr>
<td>Pourbaix Diagram for Iron</td>
<td>103</td>
</tr>
<tr>
<td>Pourbaix Diagrams for Additional Metals</td>
<td>106</td>
</tr>
<tr>
<td>Applications of Pourbaix Diagrams to Corrosion</td>
<td>108</td>
</tr>
<tr>
<td>Limitations of Pourbaix Diagrams</td>
<td>111</td>
</tr>
<tr>
<td>Pourbaix Diagrams for Alloys</td>
<td>111</td>
</tr>
<tr>
<td>Pourbaix Diagrams at Elevated Temperatures</td>
<td>112</td>
</tr>
<tr>
<td>Problems</td>
<td>114</td>
</tr>
<tr>
<td>References</td>
<td>116</td>
</tr>
<tr>
<td>7 Kinetics of Corrosion</td>
<td>119</td>
</tr>
<tr>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>Units for Corrosion Rates</td>
<td>119</td>
</tr>
<tr>
<td>Methods of Determining Corrosion Rates</td>
<td>119</td>
</tr>
<tr>
<td>Weight Loss Method</td>
<td>120</td>
</tr>
<tr>
<td>Weight Gain Method</td>
<td>120</td>
</tr>
<tr>
<td>Chemical Analysis of Solution</td>
<td>121</td>
</tr>
<tr>
<td>Gasometric Techniques</td>
<td>122</td>
</tr>
<tr>
<td>Thickness Measurements</td>
<td>124</td>
</tr>
<tr>
<td>Electrical Resistance Method</td>
<td>124</td>
</tr>
<tr>
<td>Inert Marker Method</td>
<td>124</td>
</tr>
<tr>
<td>Electrochemical Techniques</td>
<td>126</td>
</tr>
<tr>
<td>Electrochemical Polarization</td>
<td>127</td>
</tr>
<tr>
<td>Anodic and Cathodic Polarization</td>
<td>127</td>
</tr>
<tr>
<td>Visualization of Cathodic Polarization</td>
<td>127</td>
</tr>
<tr>
<td>Visualization of Anodic Polarization</td>
<td>128</td>
</tr>
<tr>
<td>Ohmic Polarization</td>
<td>130</td>
</tr>
<tr>
<td>Electrode Kinetics for Activation Polarization</td>
<td>131</td>
</tr>
<tr>
<td>Absolute Reaction Rate Theory</td>
<td>131</td>
</tr>
<tr>
<td>Electrode Kinetics for Non-Corroding Metals</td>
<td>132</td>
</tr>
<tr>
<td>How to Plot Polarization Curves?</td>
<td>136</td>
</tr>
<tr>
<td>The Tafel Equation</td>
<td>138</td>
</tr>
</tbody>
</table>
9 Passivity

Introduction
- Aluminum: An Example
- What is Passivity?
- Early History of Passivity
- Thickness of Passive Oxide Films
- Purpose of This Chapter

Electrochemical Basis for Passivity

Theories of Passivity
- Adsorption Theory
- Oxide Film Theory
- Film Sequence Theory

Surface Analysis Techniques for the Examination of Passive Films
- X-ray Photoelectron Spectroscopy (XPS)
- X-ray Absorption Spectroscopy
- Scanning Tunneling Microscopy

Models for the Passive Oxide Film on Iron
- Bilayer Model
- Hydrous Oxide Model
- Bipolar-Fixed Charge Model
- Spinel/Defect Model
- What Do These Various Models Mean?

Passive Oxide Films on Aluminum
- Air-Formed Oxide Films
- Films Formed in Aqueous Solutions

Properties of Passive Oxide Films
- Thickness
- Electronic and Ionic Conductivity
- Chemical Stability
- Mechanical Properties
- Structure of Passive Films

Passivity in Binary Alloys
- Electron Configuration Theory
- Oxide Film Properties
- Percolation Theory
- Graph Theory Model

Passivity in Stainless Steels
- Electrochemical Aspects
- Composition of Passive Films on Stainless Steels

Passivity by Alloying with Noble Metals
- Anodic Protection

References
10 Crevice Corrosion and Pitting

Introduction .. 263
Crevice Corrosion 263
 - Initiation of Crevice Corrosion 264
 - Propagation of Crevice Corrosion 269
 - Crevice Corrosion Testing 272
 - Area Effects in Crevice Corrosion 274
 - Protection Against Crevice Corrosion 275
Pitting .. 277
 - Critical Pitting Potential 278
 - Experimental Determination of Pitting Potentials ... 280
 - Effect of Chloride Ions on the Pitting Potential ... 282
 - Effect of Inhibitors on the Pitting Potential 283
 - Mechanism of Pit Initiation 283
 - Mechanism of Pit Propagation 286
 - Protection Potential 288
 - Metastable Pits and Repassivation 290
 - Experimental Pourbaix Diagrams for Pitting 291
 - Effect of Molybdenum on the Pitting of Stainless Steels 293
 - Effect of Sulfide Inclusions on the Pitting of Stainless Steels 294
 - Effect of Temperature 294
 - Protection Against Pitting 296
Pitting of Aluminum 297
 - Occluded Corrosion Cells 300
 - Occluded Corrosion Cell (OCC) on Iron 301
 - Occluded Corrosion Cells on Copper and Aluminum ... 303
 - Differences Between Pitting and Crevice Corrosion ... 306
Detection of Corrosion Pits 306
Problems .. 308
References .. 311

11 Mechanically Assisted Corrosion

Introduction .. 315
Stress-Corrosion Cracking 318
 - Mechanical Metallurgy 318
 - Characteristics of Stress-Corrosion Cracking 319
 - Stages of Stress-Corrosion Cracking 320
 - Fracture Mechanics and SCC 323
 - SCC Testing .. 331
 - Interpretation of SCC Test Data 334
 - Metallurgical Effects in SCC 335
 - Environmental Effects on SCC 336
 - Mechanisms of SCC 339
 - Protection Against Stress-Corrosion Cracking 345
Corrosion Fatigue 346
 - Corrosion Fatigue Data 347
 - Protection Against Corrosion Fatigue 348
Cavitation Corrosion 349
Contents

- **Erosion Corrosion and Fretting Corrosion** 352
- **Problems** .. 353
- **References** ... 354

12 Corrosion Inhibitors

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>357</td>
</tr>
<tr>
<td>Types of Inhibitors</td>
<td>359</td>
</tr>
<tr>
<td>Acidic Solutions</td>
<td>360</td>
</tr>
<tr>
<td>Chemisorption of Inhibitors</td>
<td>361</td>
</tr>
<tr>
<td>Effect of Inhibitor Concentration</td>
<td>362</td>
</tr>
<tr>
<td>Chemical Factors in the Effectiveness of Chemisorbed Inhibitors</td>
<td>363</td>
</tr>
<tr>
<td>Involvement of Water</td>
<td>367</td>
</tr>
<tr>
<td>Competitive vs. Co-operative Adsorption</td>
<td>369</td>
</tr>
<tr>
<td>Effect of the Electrical Double Layer</td>
<td>370</td>
</tr>
<tr>
<td>The Potential of Zero Charge</td>
<td>372</td>
</tr>
<tr>
<td>Effect of Molecular Structure</td>
<td>373</td>
</tr>
<tr>
<td>Adsorption Isotherms</td>
<td>376</td>
</tr>
<tr>
<td>Nearly Neutral Solutions</td>
<td>379</td>
</tr>
<tr>
<td>Effect of Oxide Films</td>
<td>379</td>
</tr>
<tr>
<td>Chelating Compounds as Corrosion Inhibitors</td>
<td>380</td>
</tr>
<tr>
<td>Chromates and Chromate Replacements</td>
<td>381</td>
</tr>
<tr>
<td>Inhibition of Localized Corrosion</td>
<td>382</td>
</tr>
<tr>
<td>Pitting Corrosion</td>
<td>382</td>
</tr>
<tr>
<td>Crevice Corrosion</td>
<td>386</td>
</tr>
<tr>
<td>Stress-Corrosion Cracking and Corrosion Fatigue</td>
<td>387</td>
</tr>
<tr>
<td>New Approaches to Corrosion Inhibition</td>
<td>389</td>
</tr>
<tr>
<td>Biological Molecules</td>
<td>390</td>
</tr>
<tr>
<td>Langmuir–Blodgett Films and Self-assembled Monolayers</td>
<td>393</td>
</tr>
<tr>
<td>Vapor-Phase Inhibitors</td>
<td>396</td>
</tr>
<tr>
<td>Problems</td>
<td>398</td>
</tr>
<tr>
<td>References</td>
<td>400</td>
</tr>
</tbody>
</table>

13 Corrosion Under Organic Coatings

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>403</td>
</tr>
<tr>
<td>Paints and Organic Coatings</td>
<td>404</td>
</tr>
<tr>
<td>Underfilm Corrosion</td>
<td>405</td>
</tr>
<tr>
<td>Water Permeation into an Organic Coating</td>
<td>406</td>
</tr>
<tr>
<td>Permeation of Oxygen and Ions into an Organic Coating</td>
<td>410</td>
</tr>
<tr>
<td>Breakdown of an Organic Coating</td>
<td>411</td>
</tr>
<tr>
<td>Adhesion of Organic Coatings</td>
<td>412</td>
</tr>
<tr>
<td>Improved Corrosion Prevention by Coatings</td>
<td>416</td>
</tr>
<tr>
<td>Filiform Corrosion</td>
<td>417</td>
</tr>
<tr>
<td>Corrosion Tests for Organic Coatings</td>
<td>419</td>
</tr>
<tr>
<td>Accelerated Tests</td>
<td>419</td>
</tr>
<tr>
<td>Cathodic Delamination</td>
<td>419</td>
</tr>
<tr>
<td>AC Impedance Techniques – A Brief Comment</td>
<td>422</td>
</tr>
<tr>
<td>Recent Directions and New Challenges</td>
<td>422</td>
</tr>
<tr>
<td>Problems</td>
<td>423</td>
</tr>
<tr>
<td>References</td>
<td>425</td>
</tr>
</tbody>
</table>
14 AC Impedance

Introduction ... 427
Relaxation Processes 427
Experimental Setup 429
Complex Numbers and AC Circuit Analysis 430
The Metal/Solution Interface 431
Impedance Analysis 432
Additional Methods of Plotting Impedance Data ... 434
Multiple Time Constants and the Effect of Diffusion 436
Kramers–Kronig Transforms 437
Application to Corrosion Inhibition 438
Organic Coatings 441
Oxide Films and Surface Treatments 446
Concluding Remarks 449
Problems ... 449
References .. 451

15 High-Temperature Gaseous Oxidation

Introduction ... 453
Thermodynamics of High-Temperature Oxidation ... 453
Ellingham Diagrams 454
Equilibrium Pressure of Oxygen 455
Theory of High-Temperature Oxidation 456
Oxidation Rate Laws 457
Linear Rate Law 458
Parabolic Rate Law 459
Logarithmic Rate Law 460
Comparison of Rate Laws 460
The Wagner Mechanism and the Parabolic Rate Law 460
Effect of Temperature on the Oxidation Rate 463
Defect Nature of Oxides 463
Semiconductor Nature of Oxides 465
Haufler Rules for Oxidation 466
Effect of Oxygen Pressure on Parabolic Rate Constants 471
Non-uniformity of Oxide Films 472
Protective vs. Non-protective Oxides 473
Pilling–Bedworth Ratio 473
Properties of Protective High-Temperature Oxides 473
Problems ... 474
References .. 475

16 Selected Topics in Corrosion Science

Introduction ... 477
Electrode Kinetics of Iron Dissolution in Acids ... 477
Bockris–Kelly Mechanism 478
Heusler Mechanism 480
Reconciliation of the Two Mechanisms 481
Additional Work on Electrode Kinetics 482
Distribution of Current and Potential................. 483
Contents

Laplace’s Equation .. 483
Circular Corrosion Cells 483
Parametric Study ... 486
Application to the Experiments of Rozenfeld and Pavlutskaya ... 488
Large Structures and Scaling Rules 489
 Modeling of the Cathodic Protection System of a Ship 491
 Scaling Rules .. 492
Acid–Base Properties of Oxide Films 494
 Surface Hydroxyl Groups 494
 Nature of Acidic and Basic Surface Sites 495
 Isoelectric Points of Oxides 495
 Surface Charge and Pitting 497
 Pitting Potential of Aluminum as a Function of pH 498
Surface Modification by Directed Energy Beams 499
 Ion Implantation and Related Processes 499
 Applications of Ion Implantation 501
 Laser-Surface Processing Techniques 505
 Applications of Laser-Surface Processing 507
 Comparison of Ion Implantation and Laser–Surface Processing 509
Problems .. 510
References .. 512

17 Beneficial Aspects of Corrosion 515
Introduction .. 515
 Rust Is Beautiful 515
 Copper Patinas Are Also Beautiful 515
 Cathodic Protection 517
 Electrochemical Machining 517
 Metal Cleaning 517
 Etching .. 517
 Batteries .. 517
 Passivity .. 517
 Anodizing .. 518
 Titanium Jewelry and Art 518
Caution to Inexperienced Artisans: 518
References .. 518

Answers to Selected Problems 521
 Chapter 2 .. 521
 Chapter 3 .. 521
 Chapter 4 .. 522
 Chapter 5 .. 522
 Chapter 6 .. 523
 Chapter 7 .. 524
 Chapter 8 .. 524
 Chapter 9 .. 524
 Chapter 10 525
 Chapter 11 526
 Chapter 12 526
Introduction to Corrosion Science
McCafferty, E.
2010, X, 302 p. 501 illus., 1 illus. in color., Hardcover
ISBN: 978-1-4419-0454-6