Contents

Part I Temporal and Spatial Sensations in the Human Auditory System

1 Introduction .. 3
 1.1 Auditory Temporal and Spatial Factors 3
 1.2 Auditory System Model for Temporal and Spatial Information Processing 4

2 Temporal and Spatial Aspects of Sounds and Sound Fields 9
 2.1 Analysis of Source Signals 9
 2.1.1 Power Spectrum 9
 2.1.2 Autocorrelation Function (ACF) 10
 2.1.3 Running Autocorrelation 13
 2.2 Physical Factors of Sound Fields 18
 2.2.1 Sound Transmission from a Point Source through a Room to the Listener 18
 2.2.2 Temporal-Monaural Factors 19
 2.2.3 Spatial-Binaural Factors 20
 2.3 Simulation of a Sound Field in an Anechoic Enclosure 23

3 Subjective Preferences for Sound Fields 25
 3.1 Preferred Properties for Sound Fields with Multiple Reflections .. 26
 3.1.1 Preferred Delay Time of a Single Reflection 26
 3.1.2 Preferred Horizontal Direction of a Single Reflection .. 29
 3.2 Preferred Conditions for Sound Fields with Multiple Reflections .. 30
 3.2.1 Optimal Listening Level (LL) 30
 3.2.2 Optimal First Reflection Time (Δt₁) 31
 3.2.3 Optimal Subsequent Reverberation Times (Tsub) ... 31
 3.2.4 Optimal Magnitude of Interaural Crosscorrelation (IACC) ... 33
3.3 Theory of Subjective Preferences for Sound Fields 34
3.4 Evaluation of Boston Symphony Hall Based on Temporal and Spatial Factors 37

4 Electrical and Magnetic Responses in the Central Auditory System 39
4.1 Auditory Brainstem Responses (ABRs) 40
4.1.1 Brainstem Response Correlates of Sound Direction in the Horizontal Plane 40
4.1.2 Brainstem Response Correlates of Listening Level (LL) and Interaural Crosscorrelation Magnitude (IACC) 44
4.1.3 Remarks 46
4.2 Slow Vertex Responses (SVRs) 48
4.2.1 SVR Correlates of First Reflection Time Δt_1 Contrast 48
4.2.2 Hemispheric Lateralization Related to Spatial Aspects of Sound 50
4.2.3 Response Latency Correlates of Subjective Preference 53
4.3 Electroencephalographic (EEG) Correlates of Subjective Preference 55
4.3.1 EEG Correlates of First Reflection Time Δt_1 Changes 55
4.3.2 EEG Correlates of Reverberation Time T_{sub} Changes 58
4.3.3 EEG Correlates of Interaural Correlation Magnitude (IACC) Changes 60
4.4 Magnetoencephalographic (MEG) Correlates of Preference and Annoyance 63
4.4.1 Preferences and the Persistence of Alpha Rhythms 63
4.4.2 Preferences and the Spatial Extent of Alpha Rhythms 68
4.4.3 Alpha Rhythm Correlates of Annoyance 68

5 Model of Temporal and Spatial Factors in the Central Auditory System 73
5.1 Signal Processing Model of the Human Auditory System 73
5.1.1 Summary of Neural Evidence 73
5.1.2 Auditory Signal Processing Model 75
5.2 Temporal Factors Extracted from Autocorrelations of Sound Signals 83
5.3 Auditory Temporal Window for Autocorrelation Processing 84
5.4 Spatial Factors and Interaural Crosscorrelation 86
5.5 Auditory Temporal Window for Binaural Processing 87
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Hemispheric Specialization for Spatial Attributes of Sound Fields</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>Temporal Sensations of the Sound Signal</td>
<td>91</td>
</tr>
<tr>
<td>6.1</td>
<td>Combinations of Temporal and Spatial Sensations</td>
<td>91</td>
</tr>
<tr>
<td>6.2</td>
<td>Pitch of Complex Tones and Multiband Noise</td>
<td>93</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Perception of the Low Pitch of Complex Tones</td>
<td>93</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Pitch of Multiband “Complex Noise”</td>
<td>100</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Frequency Limits of Missing Fundamentals</td>
<td>101</td>
</tr>
<tr>
<td>6.3</td>
<td>Beats Induced by Dual Missing Fundamentals</td>
<td>105</td>
</tr>
<tr>
<td>6.4</td>
<td>Loudness</td>
<td>108</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Loudness of Sharply Filtered Noise</td>
<td>108</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Loudness of Complex Noise</td>
<td>114</td>
</tr>
<tr>
<td>6.5</td>
<td>Duration Sensation</td>
<td>119</td>
</tr>
<tr>
<td>6.6</td>
<td>Timbre of an Electric Guitar Sound with Distortion</td>
<td>120</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Experiment 1 – Peak Clipping</td>
<td>122</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Experiment 2 – Commercial Effects Box</td>
<td>124</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Concluding Remarks</td>
<td>124</td>
</tr>
<tr>
<td>7</td>
<td>Spatial Sensations of Binaural Signals</td>
<td>125</td>
</tr>
<tr>
<td>7.1</td>
<td>Sound Localization</td>
<td>125</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Cues of Localization in the Horizontal Plane</td>
<td>125</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Cues of Localization in the Median Plane</td>
<td>126</td>
</tr>
<tr>
<td>7.2</td>
<td>Apparent Source Width (ASW)</td>
<td>127</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Apparent Width of Bandpass Noise</td>
<td>130</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Apparent Width of Multiband Noise</td>
<td>131</td>
</tr>
<tr>
<td>7.3</td>
<td>Subjective Diffuseness</td>
<td>136</td>
</tr>
<tr>
<td>8</td>
<td>Applications (I) – Music and Concert Hall Acoustics</td>
<td>143</td>
</tr>
<tr>
<td>8.1</td>
<td>Pitches of Piano Notes</td>
<td>143</td>
</tr>
<tr>
<td>8.2</td>
<td>Design Studies of Concert Halls as Public Spaces</td>
<td>148</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Genetic Algorithms (GAs) for Shape Optimization</td>
<td>148</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Two Actual Designs: Kirishima and Tsuyama</td>
<td>153</td>
</tr>
<tr>
<td>8.3</td>
<td>Individualized Seat Selection Systems for Enhancing Aural Experience</td>
<td>158</td>
</tr>
<tr>
<td>8.3.1</td>
<td>A Seat Selection System</td>
<td>158</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Individual Subjective Preference</td>
<td>158</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Distributions of Listener Preferences</td>
<td>161</td>
</tr>
<tr>
<td>8.4</td>
<td>Subjective Preferences of Cello Soloists for First Reflection Time, Δt_1</td>
<td>165</td>
</tr>
<tr>
<td>8.5</td>
<td>Concert Hall as Musical Instrument</td>
<td>172</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Composing with the Hall in Mind: Matching Music and Reverberation</td>
<td>172</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Expanding the Musical Image: Spatial Expression and Apparent Source Width</td>
<td>174</td>
</tr>
</tbody>
</table>
Contents

8.5.3 Enveloping Music: Spatial Expression and Musical Dynamics 175
8.6 Performing in a Hall: Blending Musical Performances with Sound Fields 175
 8.6.1 Choosing a Performing Position on the Stage 175
 8.6.2 Performance Adjustments that Optimize Temporal Factors 176
 8.6.3 Towards Future Integration of Composition, Performance and Hall Acoustics 177

9 Applications (II) – Speech Reception in Sound Fields 179
 9.1 Effects of Temporal Factors on Speech Reception 179
 9.2 Effects of Spatial Factors on Speech Reception 185
 9.3 Effects of Sound Fields on Perceptual Dissimilarity 189
 9.3.1 Perceptual Distance due to Temporal Factors 194
 9.3.2 Perceptual Distance due to Spatial Factors 195

10 Applications (III) – Noise Measurement 199
 10.1 Method of Noise Measurement 199
 10.2 Aircraft Noise 200
 10.3 Flushing Toilet Noise 207

11 Applications (IV) – Noise Annoyance 213
 11.1 Noise Annoyance in Relation to Temporal Factors 213
 11.1.1 Annoyance of Band-Pass Noise 213
 11.1.2 Annoyance of Traffic Noise 218
 11.2 Noise Annoyance in Relation to Spatial Factors 223
 11.2.1 Experiment 1: Effects of SPL and IACC Fluctuations 223
 11.2.2 Experiment 2: Effects of Sound Movement 225
 11.3 Effects of Noise and Music on Children 228

Part II Temporal and Spatial Sensations in the Human Visual System

12 Introduction to Visual Sensations 235

13 Temporal and Spatial Sensations in Vision 237
 13.1 Temporal Sensations of Flickering Light 237
 13.1.1 Conclusions 243
 13.2 Spatial Sensations 243

14 Subjective Preferences in Vision 253
 14.1 Subjective Preferences for Flickering Lights 253
 14.2 Subjective Preferences for Oscillatory Movements 259
 14.3 Subjective Preferences for Texture 263
 14.3.1 Preferred Regularity of Texture 263
 14.3.2 Application: Spatial “Vibrato” in a Drawing 264
15 EEG and MEG Correlates of Visual Subjective Preferences

15.1 EEG Correlates of Preferences for Flickering Lights

15.1.1 Persistence of Alpha Rhythms

15.1.2 Spatial Extent of Alpha Rhythms

15.2 MEG Correlates of Preferences for Flickering Lights

15.2.1 MEG Correlates of Sinusoidal Flicker

15.2.2 MEG Correlates of Fluctuating Flicker Rates

15.3 EEG Correlates of Preferences for Oscillatory Movements

15.4 Hemispheric Specializations in Vision

16 Summary of Auditory and Visual Sensations

16.1 Auditory Sensations

16.1.1 Auditory Temporal Sensations

16.1.2 Auditory Spatial Sensations

16.1.3 Auditory Subjective Preferences

16.1.4 Effects of Noise on Tasks and Annoyance

16.2 Visual Sensations

16.2.1 Temporal and Spatial Sensations in Vision

16.2.2 Visual Subjective Preferences

References

Glossary of Symbols

Abbreviations

Author Index

Subject Index
Auditory and Visual Sensations
Ando, Y.
2010, XXV, 344 p., Hardcover